196 research outputs found

    Spin injection in Silicon at zero magnetic field

    Get PDF
    In this letter, we show efficient electrical spin injection into a SiGe based \textit{p-i-n} light emitting diode from the remanent state of a perpendicularly magnetized ferromagnetic contact. Electron spin injection is carried out through an alumina tunnel barrier from a Co/Pt thin film exhibiting a strong out-of-plane anisotropy. The electrons spin polarization is then analysed through the circular polarization of emitted light. All the light polarization measurements are performed without an external applied magnetic field \textit{i.e.} in remanent magnetic states. The light polarization as a function of the magnetic field closely traces the out-of-plane magnetization of the Co/Pt injector. We could achieve a circular polarization degree of the emitted light of 3 % at 5 K. Moreover this light polarization remains almost constant at least up to 200 K.Comment: accepted in AP

    Investigation of metallic/oxide interfaces in Pt/Co/AlOx trilayers by hard x-ray reflectivity

    Get PDF
    International audienceX-ray reflectivity (XRR) is used to determine the oxidation front at the nanometer scale in sputtered perpendicular semi tunnel junctions, as the form Pt/Co/AlOx, by varying the oxidation time tOx of the capping layer. From XRR simulations, we show that the nature of the stack is gradually defined according to the value of tOx. For low tOx values (<40 s), a simple Pt/Co/Al/AlOx multilayer is appearing whereas a Pt/Co/CoO/AlOx architecture takes place for higher tOx. The oxygen-induced magnetic properties obtained by extraordinary Hall effects measurements are explained by the structural results. The increase of Co-O bondings with tOx is at the origin of the appearing of the perpendicular magnetic anisotropy (PMA)

    The contribution of x-ray specular reflectometry to the oxygen-induced magnetic properties in Pt/Co/AlOx

    Get PDF
    3 pagesInternational audienceTwo key parameters were analyzed in Si/SiO/Pt/Co/AlOx: the oxidation time of the Al layer resulting in AlOx, and the ex situ annealing temperatures varied in the 15 and 55 s and 20, 300, and 450 °C ranges, respectively. For intermediate annealing temperatures (∼300 °C), the quantitative analysis of specular reflectometry data shows that the progressive oxidation of layers by increasing the oxidation time goes along with an improvement of the homogeneity of the alumina layer. This outcome casts new light on the temperature dependence of magnetic properties of the samples. The remarkable temperature variation of the coercive field, extracted from extraordinary Hall effects in the 5-300 K range, is associated with structural change due to Co-oxygen bondings, which leads to strong pinning of Co spins in the low temperature regime

    Using exchange bias to extend the temperature range of square loop behavior in [Pt/Co] multilayers with perpendicular anisotropy

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.The temperature dependence of the magnetic properties of [Pt/Co]multilayers (ML), exhibiting perpendicular anisotropy, with and without exchange biasing with an antiferromagnet(AFM) has been investigated. Upon heating, a loss of the out-of-plane anisotropy and, consequently, of the remanence to saturation ratio is observed in these systems. However, such effect occurs at higher temperatures in the [Pt/Co] ML exchange coupled to the AFM than for the unbiased ML. This is attributed to the additional anisotropy induced to the ML by the ferromagnetic-antiferromagnetic exchange coupling

    Field-free all-optical switching and electrical read-out of Tb/Co-based magnetic tunnel junctions

    Full text link
    Switching of magnetic tunnel junction using femto-second laser enables a possible path for THz frequency memory operation, which means writing speeds 2 orders of magnitude faster than alternative electrical approaches based on spin transfer or spin orbit torque. In this work we demonstrate successful field-free 50fs single laser pulse driven magnetization reversal of [Tb/Co] based storage layer in a perpendicular magnetic tunnel junction. The nanofabricated magnetic tunnel junction devices have an optimized bottom reference electrode and show Tunnel Magnetoresistance Ratio values (TMR) up to 74\% after patterning down to sub-100nm lateral dimensions. Experiments on continuous films reveal peculiar reversal patterns of concentric rings with opposite magnetic directions, above certain threshold fluence. These rings have been correlated to patterned device switching probability as a function of the applied laser fluence. Moreover, the magnetization reversal is independent on the duration of the laser pulse. According to our macrospin model, the underlying magnetization reversal mechanism can be attributed to an in-plane reorientation of the magnetization due to a fast reduction of the out-of-plane uniaxial anisotropy. These aspects are of great interest both for the physical understanding of the switching phenomenon and their consequences for all-optical-switching memory devices, since they allow for a large fluence operation window with high resilience to pulse length variability

    Improved coherence of ultrafast spin-transfer-driven precessional switching with synthetic antiferromagnet perpendicular polarizer

    Get PDF
    International audienceThe coherence of the precessional switching was compared in planar spin-valves comprising either an additional simple perpendicular polarizer or a synthetic antiferromagnet perpendicular polarizer. A significant improvement in the precession coherence was observed experimentally in the second type of samples. Micromagnetic simulations were performed to study the effect of the stray field from the perpendicular polarizer. They provide an explanation for the gradual loss of coherence of the precession in terms of vortex formation, which occurs much faster when a simple perpendicular polarizer is used

    Elastic electron deuteron scattering with consistent meson exchange and relativistic contributions of leading order

    Get PDF
    The influence of relativistic contributions to elastic electron deuteron scattering is studied systematically at low and intermediate momentum transfers (Q230Q^2\leq 30 fm2^{-2}). In a (p/M)(p/M)-expansion, all leading order relativistic π\pi-exchange contributions consistent with the Bonn OBEPQ models are included. In addition, static heavy meson exchange currents including boost terms and lowest order ρπγ\rho\pi\gamma-currents are considered. Sizeable effects from the various relativistic two-body contributions, mainly from π\pi-exchange, have been found in form factors, structure functions and the tensor polarization T20T_{20}. Furthermore, static properties, viz. magnetic dipole and charge quadrupole moments and the mean square charge radius are evaluated.Comment: 15 pages Latex including 5 figures, final version accepted for publication in Phys.Rev.C Details of changes: (i) The notation of the curves in Figs. 1 and 2 have been clarified with respect to left and right panels. (ii) In Figs. 3 and 4 an experimental point for T_20 has been added and a corresponding reference [48] (iii) At the end of the text we have added a paragraph concerning the quality of the Bonn OBEPQ potential

    Femtometer Toroidal Structures in Nuclei

    Get PDF
    The two-nucleon density distributions in states with isospin T=0T=0, spin SS=1 and projection MSM_S=0 and ±\pm1 are studied in 2^2H, 3,4^{3,4}He, 6,7^{6,7}Li and 16^{16}O. The equidensity surfaces for MSM_S=0 distributions are found to be toroidal in shape, while those of MSM_S=±\pm1 have dumbbell shapes at large density. The dumbbell shapes are generated by rotating tori. The toroidal shapes indicate that the tensor correlations have near maximal strength at r<2r<2 fm in all these nuclei. They provide new insights and simple explanations of the structure and electromagnetic form factors of the deuteron, the quasi-deuteron model, and the dpdp, dddd and αd\alpha d LL=2 (DD-wave) components in 3^3He, 4^4He and 6^6Li. The toroidal distribution has a maximum-density diameter of \sim1 fm and a half-maximum density thickness of \sim0.9 fm. Many realistic models of nuclear forces predict these values, which are supported by the observed electromagnetic form factors of the deuteron, and also predicted by classical Skyrme effective Lagrangians, related to QCD in the limit of infinite colors. Due to the rather small size of this structure, it could have a revealing relation to certain aspects of QCD.Comment: 35 pages in REVTeX, 25 PostScript figure
    corecore