453 research outputs found

    Dependence of nonlocal Gilbert damping on the ferromagnetic layer type in FM/Cu/Pt heterostructures

    Full text link
    We have measured the size effect in nonlocal Gilbert relaxation rate in FM(tFM_{FM}) / Cu (5nm) [/ Pt (2nm)] / Al(2nm) heterostructures, FM = \{ Ni81_{81}Fe19_{19}, Co60_{60}Fe20_{20}B20_{20}, pure Co\}. Common behavior is observed for three FM layers, where the additional relaxation obeys both a strict inverse power law dependence ΔG=Ktn\Delta G =K \:t^{n}, n=1.04±0.06n=-\textrm{1.04}\pm\textrm{0.06} and a similar magnitude K=224±40 MhznmK=\textrm{224}\pm\textrm{40 Mhz}\cdot\textrm{nm}. As the tested FM layers span an order of magnitude in spin diffusion length λSDL\lambda_{SDL}, the results are in support of spin diffusion, rather than nonlocal resistivity, as the origin of the effect

    Spin pumping damping and magnetic proximity effect in Pd and Pt spin-sink layers

    Full text link
    We investigated the spin pumping damping contributed by paramagnetic layers (Pd, Pt) in both direct and indirect contact with ferromagnetic Ni81_{81}Fe19_{19} films. We find a nearly linear dependence of the interface-related Gilbert damping enhancement Δα\Delta\alpha on the heavy-metal spin-sink layer thicknesses tN_\textrm{N} in direct-contact Ni81_{81}Fe19_{19}/(Pd, Pt) junctions, whereas an exponential dependence is observed when Ni81_{81}Fe19_{19} and (Pd, Pt) are separated by \unit[3]{nm} Cu. We attribute the quasi-linear thickness dependence to the presence of induced moments in Pt, Pd near the interface with Ni81_{81}Fe19_{19}, quantified using X-ray magnetic circular dichroism (XMCD) measurements. Our results show that the scattering of pure spin current is configuration-dependent in these systems and cannot be described by a single characteristic length

    High domain wall velocities induced by current in ultrathin Pt/Co/AlOx wires with perpendicular magnetic anisotropy

    Full text link
    Current-induced domain wall (DW) displacements in an array of ultrathin Pt/Co/AlOx wires with perpendicular magnetic anisotropy have been directly observed by wide field Kerr microscopy. DWs in all wires in the array were driven simultaneously and their displacement on the micrometer-scale was controlled by the current pulse amplitude and duration. At the lower current densities where DW displacements were observed (j less than or equal to 1.5 x 10^12 A/m^2), the DW motion obeys a creep law. At higher current density (j = 1.8 x 10^12 A/m^2), zero-field average DW velocities up to 130 +/- 10 m/s were recorded.Comment: Minor changes to Fig. 1(b) and text, correcting for the fact that domain walls were subsequently found to move counter to the electron flow. References update

    Electric-field control of domain wall nucleation and pinning in a metallic ferromagnet

    Get PDF
    The electric (E) field control of magnetic properties opens the prospects of an alternative to magnetic field or electric current activation to control magnetization. Multilayers with perpendicular magnetic anisotropy (PMA) have proven to be particularly sensitive to the influence of an E-field due to the interfacial origin of their anisotropy. In these systems, E-field effects have been recently applied to assist magnetization switching and control domain wall (DW) velocity. Here we report on two new applications of the E-field in a similar material : controlling DW nucleation and stopping DW propagation at the edge of the electrode

    Spin injection in Silicon at zero magnetic field

    Get PDF
    In this letter, we show efficient electrical spin injection into a SiGe based \textit{p-i-n} light emitting diode from the remanent state of a perpendicularly magnetized ferromagnetic contact. Electron spin injection is carried out through an alumina tunnel barrier from a Co/Pt thin film exhibiting a strong out-of-plane anisotropy. The electrons spin polarization is then analysed through the circular polarization of emitted light. All the light polarization measurements are performed without an external applied magnetic field \textit{i.e.} in remanent magnetic states. The light polarization as a function of the magnetic field closely traces the out-of-plane magnetization of the Co/Pt injector. We could achieve a circular polarization degree of the emitted light of 3 % at 5 K. Moreover this light polarization remains almost constant at least up to 200 K.Comment: accepted in AP

    Pinned synthetic ferrimagnets with perpendicular anisotropy and tuneable exchange bias

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.Pinned synthetic ferrimagnets (syFerri) with perpendicular-to-plane magnetic anisotropy, of the form AP1/Ru/AP2/FeMn [where AP1 and AP2 are (Co/Pt) multilayers], have been prepared and characterized. The magnitudes of the exchange bias fields of both AP1 and AP2 can be tuned at room temperature by simply varying the relative number of (Co/Pt) repeats in each multilayer. This effect can be quantitatively interpreted by considering the different energy contributions involved during magnetization reversal. Moreover, from the values of these fields, the characteristic parameters of the system (i.e., coupling strength through the Ru and AP2/FeMn pinning energy), can be evaluated. Interestingly, an extended plateau with a virtually constant magnetization is observed around zero field when the number of Co/Pt repeats in AP1 is equal or larger than in AP2. This is very appealing for field sensor or memories applications using spin valves or tunnel junctions with perpendicular anisotropy, since it offers a large dynamic range over which the magnetic configuration of the syFerri remains stable

    Large anomalous enhancement of perpendicular exchange bias by introduction of a nonmagnetic spacer between the ferromagnetic and antiferromagnetic layers

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.In (Pt/Co)n/FeMnmultilayers, the magnitude of exchange bias,HE, can be considerably enhanced by placing an ultrathin nonmagnetic Pt spacer between the multilayer (ML) and the antiferromagnetic(AFM) layer. The bias is maximum for a spacer layer thickness, t, of a few angstroms and it decreases progressively as t is further increased. This bias enhancement is accompanied by an increase of coercivity,HC. This behavior is due to the role of the Pt spacer in enhancing the perpendicular effective anisotropy of the last Co layer in the ML, which has the effect of increasing the net ferromagnetic (FM)/AFM spin projection, thus leading to the HE and HC enhancements. The decrease of HE and HC for thicker spacer layers is due to the limited range of the FM-AFM proximity effect

    Modulating spin transfer torque switching dynamics with two orthogonal spin-polarizers by varying the cell aspect ratio

    Full text link
    We study in-plane magnetic tunnel junctions with additional perpendicular polarizer for subnanosecond-current-induced switching memories. The spin-transfer-torque switching dynamics was studied as a function of the cell aspect ratio both experimentally and by numerical simulations using the macrospin model. We show that the anisotropy field plays a significant role in the dynamics, along with the relative amplitude of the two spin-torque contributions. This was confirmed by micromagnetic simulations. Real-time measurements of the reversal were performed with samples of low and high aspect ratio. For low aspect ratios, a precessional motion of the magnetization was observed and the effect of temperature on the precession coherence was studied. For high aspect ratios, we observed magnetization reversals in less than 1 ns for high enough current densities, the final state being controlled by the current direction in the magnetic tunnel junction cell.Comment: 6 pages, 7 figure
    corecore