260 research outputs found

    The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity

    Get PDF
    Listeria monocytogenes has emerged as a remarkably tractable pathogen to dissect basic aspects of cell biology, intracellular pathogenesis, and innate and acquired immunity. In order to maintain its intracellular lifestyle, L. monocytogenes has evolved a number of mechanisms to exploit host processes to grow and spread cell to cell without damaging the host cell. The pore-forming protein listeriolysin O mediates escape from host vacuoles and utilizes multiple fail-safe mechanisms to avoid causing toxicity to infected cells. Once in the cytosol, the L. monocytogenes ActA protein recruits host cell Arp2/3 complexes and enabled/vasodilator-stimulated phosphoprotein family members to mediate efficient actin-based motility, thereby propelling the bacteria into neighboring cells. Alteration in any of these processes dramatically reduces the ability of the bacteria to establish a productive infection in vivo

    Bacterial Ligands Generated in a Phagosome Are Targets of the Cytosolic Innate Immune System

    Get PDF
    Macrophages are permissive hosts to intracellular pathogens, but upon activation become microbiocidal effectors of innate and cell-mediated immunity. How the fate of internalized microorganisms is monitored by macrophages, and how that information is integrated to stimulate specific immune responses is not understood. Activation of macrophages with interferon (IFN)–γ leads to rapid killing and degradation of Listeria monocytogenes in a phagosome, thus preventing escape of bacteria to the cytosol. Here, we show that activated macrophages induce a specific gene expression program to L. monocytogenes degraded in the phago-lysosome. In addition to activation of Toll-like receptor (TLR) signaling pathways, degraded bacteria also activated a TLR-independent transcriptional response that was similar to the response induced by cytosolic L. monocytogenes. More specifically, degraded bacteria induced a TLR-independent IFN-β response that was previously shown to be specific to cytosolic bacteria and not to intact bacteria localized to the phagosome. This response required the generation of bacterial ligands in the phago-lysosome and was largely dependent on nucleotide-binding oligomerization domain 2 (NOD2), a cytosolic receptor known to respond to bacterial peptidoglycan fragments. The NOD2-dependent response to degraded bacteria required the phagosomal membrane potential and the activity of lysosomal proteases. The NOD2-dependent IFN-β production resulted from synergism with other cytosolic microbial sensors. This study supports the hypothesis that in activated macrophages, cytosolic innate immune receptors are activated by bacterial ligands generated in the phagosome and transported to the cytosol

    Mice Lacking the Type I Interferon Receptor Are Resistant to Listeria monocytogenes

    Get PDF
    Listeria monocytogenes is a facultative intracellular pathogen that induces a cytosolic signaling cascade resulting in expression of interferon (IFN)-β. Although type I IFNs are critical in viral defense, their role in immunity to bacterial pathogens is much less clear. In this study, we addressed the role of type I IFNs by examining the infection of L. monocytogenes in BALB/c mice lacking the type I IFN receptor (IFN-α/βR−/−). During the first 24 h of infection in vivo, IFN-α/βR−/− and wild-type mice were similar in terms of L. monocytogenes survival. In addition, the intracellular fate of L. monocytogenes in macrophages cultured from IFN-α/βR−/− and wild-type mice was indistinguishable. However, by 72 h after inoculation in vivo, IFN-α/βR−/− mice were ∼1,000-fold more resistant to a high dose L. monocytogenes infection. Resistance was correlated with elevated levels of interleukin 12p70 in the blood and increased numbers of CD11b+ macrophages producing tumor necrosis factor α in the spleen of IFN-α/βR−/− mice. The results of this study suggest that L. monocytogenes might be exploiting an innate antiviral response to promote its pathogenesis

    Pivotal role of VASP in Arp2/3 complex–mediated actin nucleation, actin branch-formation, and Listeria monocytogenes motility

    Get PDF
    The Listeria monocytogenes ActA protein mediates actin-based motility by recruiting and stimulating the Arp2/3 complex. In vitro, the actin monomer-binding region of ActA is critical for stimulating Arp2/3-dependent actin nucleation; however, this region is dispensable for actin-based motility in cells. Here, we provide genetic and biochemical evidence that vasodilator-stimulated phosphoprotein (VASP) recruitment by ActA can bypass defects in actin monomer-binding. Furthermore, purified VASP enhances the actin-nucleating activity of wild-type ActA and the Arp2/3 complex while also reducing the frequency of actin branch formation. These data suggest that ActA stimulates the Arp2/3 complex by both VASP-dependent and -independent mechanisms that generate distinct populations of actin filaments in the comet tails of L. monocytogenes. The ability of VASP to contribute to actin filament nucleation and to regulate actin filament architecture highlights the central role of VASP in actin-based motility

    Listeria monocytogenes Traffics from Maternal Organs to the Placenta and Back

    Get PDF
    Infection with Listeria monocytogenes is a significant health problem during pregnancy. This study evaluates the role of trafficking between maternal organs and placenta in a pregnant guinea pig model of listeriosis. After intravenous inoculation of guinea pigs, the initial ratio of bacteria in maternal organs to placenta was 10(3)–10(4):1. Rapid increase of bacteria in the placenta changed the ratio to 1:1 after 24 h. Utilizing two wild-type strains, differentially marked by their susceptibility to erythromycin, we found that only a single bacterium was necessary to cause placental infection, and that L. monocytogenes trafficked from maternal organs to the placenta in small numbers. Surprisingly, bacteria trafficked in large numbers from the placenta to maternal organs. Bacterial growth, clearance, and transport between organs were simulated with a mathematical model showing that the rate of bacterial clearance relative to the rate of bacterial replication in the placenta was sufficient to explain the difference in the course of listeriosis in pregnant versus nonpregnant animals. These results provide the basis for a new model where the placenta is relatively protected from infection. Once colonized, the placenta becomes a nidus of infection resulting in massive reseeding of maternal organs, where L. monocytogenes cannot be cleared until trafficking is interrupted by expulsion of the infected placental tissues

    Induction of Interferon-Stimulated Genes by Chlamydia pneumoniae in Fibroblasts Is Mediated by Intracellular Nucleotide-Sensing Receptors

    Get PDF
    BACKGROUND: Recognition of microorganisms by the innate immune system is mediated by pattern recognition receptors, including Toll-like receptors and cytoplasmic RIG-I-like receptors. Chlamydia, which include several human pathogenic species, are obligate intracellular gram-negative bacteria that replicate in cytoplasmic vacuoles. The infection triggers a host response contributing to both bacterial clearance and tissue damage. For instance, type I interferons (IFN)s have been demonstrated to exacerbate the course of Chlamydial lung infections in mice. METHODS/PRINCIPAL FINDINGS: Here we show that Chlamydia pneumoniae induces expression of IFN-stimulated genes (ISG)s dependent on recognition by nucleotide-sensing Toll-like receptors and RIG-I-like receptors, localized in endosomes and the cytoplasm, respectively. The ISG response was induced with a delayed kinetics, compared to virus infections, and was dependent on bacterial replication and the bacterial type III secretion system (T3SS). CONCLUSIONS/SIGNIFICANCE: Activation of the IFN response during C. pneumoniae infection is mediated by intracellular nucleotide-sensing PRRs, which operate through a mechanism dependent on the bacterial T3SS. Strategies to inhibit the chlamydial T3SS may be used to limit the detrimental effects of the type I IFN system in the host response to Chlamydia infection

    Innate Immune Recognition of Yersinia pseudotuberculosis Type III Secretion

    Get PDF
    Specialized protein translocation systems are used by many bacterial pathogens to deliver effector proteins into host cells that interfere with normal cellular functions. How the host immune system recognizes and responds to this intrusive event is not understood. To address these questions, we determined the mammalian cellular response to the virulence-associated type III secretion system (T3SS) of the human pathogen Yersinia pseudotuberculosis. We found that macrophages devoid of Toll-like receptor (TLR) signaling regulate expression of 266 genes following recognition of the Y. pseudotuberculosis T3SS. This analysis revealed two temporally distinct responses that could be separated into activation of NFκB- and type I IFN-regulated genes. Extracellular bacteria were capable of triggering these signaling events, as inhibition of bacterial uptake had no effect on the ensuing innate immune response. The cytosolic peptidoglycan sensors Nod1 and Nod2 and the inflammasome component caspase-1 were not involved in NFκB activation following recognition of the Y. pseudotuberculosis T3SS. However, caspase-1 was required for secretion of the inflammatory cytokine IL-1β in response to T3SS-positive Y. pseudotuberculosis. In order to characterize the bacterial requirements for induction of this novel TLR-, Nod1/2-, and caspase-1-independent response, we used Y. pseudotuberculosis strains lacking specific components of the T3SS. Formation of a functional T3SS pore was required, as bacteria expressing a secretion needle, but lacking the pore-forming proteins YopB or YopD, did not trigger these signaling events. However, nonspecific membrane disruption could not recapitulate the NFκB signaling triggered by Y. pseudotuberculosis expressing a functional T3SS pore. Although host cell recognition of the T3SS did not require known translocated substrates, the ensuing response could be modulated by effectors such as YopJ and YopT, as YopT amplified the response, while YopJ dampened it. Collectively, these data suggest that combined recognition of the T3SS pore and YopBD-mediated delivery of immune activating ligands into the host cytosol informs the host cell of pathogenic challenge. This leads to a unique, multifactorial response distinct from the canonical immune response to a bacterium lacking a T3SS

    Impaired Cellular Responses to Cytosolic DNA or Infection with Listeria monocytogenes and Vaccinia Virus in the Absence of the Murine LGP2 Protein

    Get PDF
    Innate immune signaling is crucial for detection of and the initial response to microbial pathogens. Evidence is provided indicating that LGP2, a DEXH box domain protein related to the RNA recognition receptors RIG-I and MDA5, participates in the cellular response to cytosolic double-stranded DNA (dsDNA). Analysis of embryonic fibroblasts and macrophages from mice harboring targeted disruption in the LGP2 gene reveals that LGP2 can act as a positive regulator of type I IFN and anti-microbial gene expression in response to transfected dsDNA. Results indicate that infection of LGP2-deficient mice with an intracellular bacterial pathogen, Listeria monocytogenes, leads to reduced levels of type I IFN and IL12, and allows increased bacterial growth in infected animals, resulting in greater colonization of both spleen and liver. Responses to infection with vaccinia virus, a dsDNA virus, are also suppressed in cells lacking LGP2, reinforcing the ability of LGP2 to act as a positive regulator of antiviral signaling. In vitro mechanistic studies indicate that purified LGP2 protein does not bind DNA but instead mediates these responses indirectly. Data suggest that LGP2 may be acting downstream of the intracellular RNA polymerase III pathway to activate anti-microbial signaling. Together, these findings demonstrate a regulatory role for LGP2 in the response to cytosolic DNA, an intracellular bacterial pathogen, and a DNA virus, and provide a plausible mechanistic hypothesis as the basis for this activity

    A Fluorescence Reporter Model Defines “Tip-DCs” as the Cellular Source of Interferon β in Murine Listeriosis

    Get PDF
    Production of type I interferons, consisting mainly of multiple IFNα subtypes and IFNβ, represents an essential part of the innate immune defense against invading pathogens. While in most situations, namely viral infections, this class of cytokines is indispensable for host survival they mediate a detrimental effect during infection with L. monocytogenes by rendering macrophages insensitive towards IFNγ signalling which leads to a lethal bacterial pathology in mice. Due to a lack of suitable analytic tools the precise identity of the cell population responsible for type I IFN production remains ill-defined and so far these cells have been described to be macrophages. As in general IFNβ is the first type I interferon to be produced, we took advantage of an IFNβ fluorescence reporter-knockin mouse model in which YFP is expressed from a bicistronic mRNA linked by an IRES to the endogenous ifnb mRNA to assess the IFNβ production on a single cell level in situ. Our results showed highest frequencies and absolute numbers of IFNβ+ cells in the spleen 24 h after infection with L. monocytogenes where they were located predominately in the white pulp within the foci of infection. Detailed FACS surface marker analyses, intracellular cytokine stainings and T cell proliferation assays revealed that the IFNβ+ cells were a phenotypically and functionally further specialized subpopulation of TNF and iNOS producing DCs (Tip-DCs) which are known to be essential for the early containment of L. monocytogenes infection. We proved that the IFNβ+ cells exhibited the hallmark characteristics of Tip-DCs as they produced iNOS and TNF and possessed T cell priming abilities. These results point to a yet unappreciated ambiguous role for a multi-effector, IFNβ producing subpopulation of Tip-DCs in controlling the balance between containment of L. monocytogenes infection and effects detrimental to the host driven by IFNβ
    corecore