22 research outputs found

    Cardiolipin plays an essential role in the formation of intracellular membranes in Escherichia coli

    No full text
    Mitochondria, chloroplasts and photosynthetic bacteria are characterized by the presence of complex and intricate membrane systems. In contrast, non-photosynthetic bacteria lack membrane structures within their cytoplasm. However, large scale over-production of some membrane proteins, such as the fumarate reductase, the mannitol permease MtlA, the glycerol acyl transferase PlsB, the chemotaxis receptor Tsr or the ATP synthase subunit b, can induce the proliferation of intra cellular membranes (ICMs) in the cytoplasm of Escherichia coli. These ICMs are particularly rich in cardiolipin (CL). Here, we have studied the effect of CL in the generation of these membranous structures. We have deleted the three genes (clsA, clsB and clsC) responsible of CL biosynthesis in E. coli and analysed the effect of these mutations by fluorescent and electron microscopy and by lipid mass spectrometry. We have found that CL is essential in the formation of non-lamellar structures in the cytoplasm of E. coli cells. These results could help to understand the structuration of membranes in E. coli and other membrane organelles, such as mitochondria and ER.This work was supported by the Spanish Ministerio de EconomĂ­a y Competitividad (MINECO) grant BFU2013-49486-EXP (to I A), by the Centre National de la Recherche Scientifique, INSERM, and by the “Initiative d'Excellence” program from the French State (Grant “DYNAMO”, ANR-11-LABEX-0011-01) (to BM). FA is supported by a DYNAMO PhD fellowship. The authors acknowledge Jorge Mata, Dr. F. Madrazo, Dr. M.T. Berciano and Dr. M. Lafarga at the IDIVAL institute in Santander, Spain, for help with the cross-sections of cells. We also like to acknowledge RĂ©gion Ile de France for co-funding the SAMM MS Facility at IPSIT.Peer Reviewe

    Analysis of linoleoyl and oleoyl macrogolglycerides by high performance liquid chromatography coupled to the atmospheric pressure photoionization mass spectrometry

    No full text
    Linoleoyl macrogolglyceride (LM) and oleoyl macrogolglyceride (OM) are pharmaceutical ingredients, obtained from corn and apricot kernel oils respectively. This study aims to know the detailed chemical composition of LM and OM, in order to understand their roles in pharmaceutical formulations. These two products were analyzed by non-aqueous reversed phase high-performance liquid chromatography (NARP-HPLC), using Vintage Series KR C18 column (250 × 4.6 mm, 5 ”m) and non-aqueous acetonitrile/acetone mixture as mobile phase. The ionization source used was atmospheric pressure photoionization (APPI) and the analyzer was LTQ-OrbitrapÂź (hybrid analyzer: double linear ion trap coupled to a Fourier transform orbital trap). LM and OM consist of complex mixtures, constituted of mono-(MG), di-(DG) and triglycerides (TG) and mono-(MPEGE) and di PEG-6 esters (DPEGE) of linoleic acid (18:2) for LM and of oleic acid (18:1) for OM. NARP-HPLC-APPI method allowed the separation and the identification of the glyceride classes (MGs, DGs and TGs) and the PEG esters of different chain lengths (PEG-chain lengths of fatty acid moieties and number of units of ethylene oxide), at the same time and in one single run, for both products LM and OM. The comparative study between LM and OM showed that, a higher presence of linoleic esters for LM, and a higher presence of oleic esters for OM

    The Linoleic Acid Content of the Stratum Corneum of Ichthyotic Golden Retriever Dogs Is Reduced as Compared to Healthy Dogs and a Significant Part Is Oxidized in Both Free and Esterified Forms

    No full text
    Golden Retrievers may suffer from Pnpl1-related inherited ichthyosis. Our study shows that in the stratum corneum (SC) of ichthyotic dogs, linoleic acid (LA) is also present in the form of 9-keto-octadecadienoic acid (9-KODE) instead of the acylacid form as in normal dogs. The fatty acids purified from SC strips (LA, acylacids) were characterized by liquid chromatography-tandem mass spectrometry (LC-MS) and atmospheric pressure chemical ionization (APCI). Electrospray ionization (ESI) and MS2(MS/MS Tandem mass spectrum/spectra)/M3 (MS/MS/MS Tandem mass spectrum/spectra) fragmentation indicated the positions of the double bonds in 9-KODE. We showed that ichthyotic dogs have a threefold lower LA content in the form of acylacids. The MS2 fragmentation of acyl acids showed in some peaks the presenceof an ion at the m/z 279, instead of an ion at m/z 293 which is characteristic of LA. The detected variant was identified upon MS3 fragmentation as 9-keto-octadecadienoic acid (9-KODE), and the level of this keto-derivative was increased in ichthyotic dogs. We showed by the APCI that such keto forms of LA are produced from hydroperoxy-octadecadienoic acids (HpODE) upon dehydration. In conclusion, the free form of 9-KODE was detected in ichthyotic SC up to fivefold as compared to unaffected dogs, and analyses by HPLC (High performance liquid chromatography) and ESI-MS (Electrospray Ionization-Mass Spectrometry) indicated its production via dehydration of native 9-HpODE

    Phospholipids: Identification and Implication in Muscle Pathophysiology

    No full text
    International audiencePhospholipids (PLs) are amphiphilic molecules that were essential for life to become cellular. PLs have not only a key role in compartmentation as they are the main components of membrane, but they are also involved in cell signaling, cell metabolism, and even cell pathophysiology. Considered for a long time to simply be structural elements of membranes, phospholipids are increasingly being viewed as sensors of their environment and regulators of many metabolic processes. After presenting their main characteristics, we expose the increasing methods of PL detection and identification that help to understand their key role in life processes. Interest and importance of PL homeostasis is growing as pathogenic variants in genes involved in PL biosynthesis and/or remodeling are linked to human diseases. We here review diseases that involve deregulation of PL homeostasis and present a predominantly muscular phenotype

    Influence of hydrophobic groups attached to amphipathic polymers on the solubilization of membrane proteins along with their lipids

    No full text
    International audienceOne of the biggest challenges in membrane protein (MP) research is to secure physiologically relevant structural and functional information after extracting MPs from their native membrane. Amphipathic polymers represent attractive alternatives to detergents for stabilizing MPs in aqueous solutions. The predominant polymers used in MP biochemistry and biophysics are amphipols (APols), one class of which, styrene maleic-acid (SMA) copolymers and their derivatives, has proven particularly efficient at MP extraction. In order to examine the relationship between the chemical structure of the polymers and their ability to extract MPs, we have developed two novel classes of APols bearing either cycloalkane or aryl (aromatic) rings, named CyclAPols and ArylAPols, respectively. The effect on solubilization of such parameters as the density of hydrophobic groups, the number of carbon atoms and their arrangement in the hydrophobic moieties, as well as the charge density of the polymers was evaluated. The membrane-solubilizing efficiency of the SMAs, CyclAPols and ArylAPols was compared using as models i) two MPs, BmrA and a GFP-fused version of LacY, overexpressed in the inner membrane of Escherichia coli, and ii) bacteriorhodopsin, naturally expressed in the purple membrane of Halobacterium salinarum. This analysis shows that, as compared to SMAs, the novel APols feature an improved efficiency at extracting MPs while preserving native protein-lipid interactions

    Cyclodextrin Complexation Studies as the First Step for Repurposing of Chlorpromazine

    No full text
    International audienceThe antipsychotic drug chlorpromazine (CPZ) has potential for the treatment of acute myeloid leukemia, if central nervous system side-effects resulting from its passage through the blood-brain barrier can be prevented. A robust drug delivery system for repurposed CPZ would be drug-in-cyclodextrin-in-liposome that would redirect the drug away from the brain while avoiding premature release in the circulation. As a first step, CPZ complexation with cyclodextrin (CD) has been studied. The stoichiometry, binding constant, enthalpy, and entropy of complex formation between CPZ and a panel of CDs was investigated by isothermal titration calorimetry (ITC). All the tested CDs were able to include CPZ, in the form of 1:1, 1:2 or a mixture of 1:1 and 1:2 complexes. In particular, a substituted γ-CD, sugammadex (the octasodium salt of octakis(6-deoxy-6-S-(2-carboxyethyl)-6-thio)cyclomaltooctaose), formed exclusively 1:2 complexes with an extremely high association constant of 6.37 × 10 9 M −2. Complexes were further characterized by heat capacity changes, one-and twodimensional (ROESY) nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations. Finally, protection of CPZ against photodegradation by CDs was assessed. This was accelerated rather than reduced by complexation with CD. Altogether these results provide a molecular basis for the use of CD in delayed release formulations for CPZ

    Sex-Specific Patterns of Diaphragm Phospholipid Content and Remodeling during Aging and in a Model of SELENON-Related Myopathy

    No full text
    Growing evidence shows that the lipid bilayer is a key site for membrane interactions and signal transduction. Surprisingly, phospholipids have not been widely studied in skeletal muscles, although mutations in genes involved in their biosynthesis have been associated with muscular diseases. Using mass spectrometry, we performed a phospholipidomic profiling in the diaphragm of male and female, young and aged, wild type and SelenoN knock-out mice, the murine model of an early-onset inherited myopathy with severe diaphragmatic dysfunction. We identified 191 phospholipid (PL) species and revealed an important sexual dimorphism in PLs in the diaphragm, with almost 60% of them being significantly different between male and female animals. In addition, 40% of phospholipids presented significant age-related differences. Interestingly, SELENON protein absence was responsible for remodeling of 10% PL content, completely different in males and in females. Expression of genes encoding enzymes involved in PL remodeling was higher in males compared to females. These results establish the diaphragm PL map and highlight an important PL remodeling pattern depending on sex, aging and partly on genotype. These differences in PL profile may contribute to the identification of biomarkers associated with muscular diseases and muscle aging

    Sex-Specific Patterns of Diaphragm Phospholipid Content and Remodeling during Aging and in a Model of SELENON-Related Myopathy

    No full text
    Growing evidence shows that the lipid bilayer is a key site for membrane interactions and signal transduction. Surprisingly, phospholipids have not been widely studied in skeletal muscles, although mutations in genes involved in their biosynthesis have been associated with muscular diseases. Using mass spectrometry, we performed a phospholipidomic profiling in the diaphragm of male and female, young and aged, wild type and SelenoN knock-out mice, the murine model of an early-onset inherited myopathy with severe diaphragmatic dysfunction. We identified 191 phospholipid (PL) species and revealed an important sexual dimorphism in PLs in the diaphragm, with almost 60% of them being significantly different between male and female animals. In addition, 40% of phospholipids presented significant age-related differences. Interestingly, SELENON protein absence was responsible for remodeling of 10% PL content, completely different in males and in females. Expression of genes encoding enzymes involved in PL remodeling was higher in males compared to females. These results establish the diaphragm PL map and highlight an important PL remodeling pattern depending on sex, aging and partly on genotype. These differences in PL profile may contribute to the identification of biomarkers associated with muscular diseases and muscle aging
    corecore