27 research outputs found

    Mars Express measurements of surface albedo changes over 2004 - 2010

    Get PDF
    The pervasive Mars dust is continually transported between the surface and the atmosphere. When on the surface, dust increases the albedo of darker underlying rocks and regolith, which modifies climate energy balance and must be quantified. Remote observation of surface albedo absolute value and albedo change is however complicated by dust itself when lifted in the atmosphere. Here we present a method to calculate and map the bolometric solar hemispherical albedo of the Martian surface using the 2004 - 2010 OMEGA imaging spectrometer dataset. This method takes into account aerosols radiative transfer, surface photometry, and instrumental issues such as registration differences between visible and near-IR detectors. Resulting albedos are on average 17% higher than previous estimates for bright surfaces while similar for dark surfaces. We observed that surface albedo changes occur mostly during the storm season due to isolated events. The main variations are observed during the 2007 global dust storm and during the following year. A wide variety of change timings are detected such as dust deposited and then cleaned over a Martian year, areas modified only during successive global dust storms, and perennial changes over decades. Both similarities and differences with previous global dust storms are observed. While an optically thin layer of bright dust is involved in most changes, this coating turns out to be sufficient to mask underlying mineralogical near-IR spectral signatures. Overall, changes result from apparently erratic events; however, a cyclic evolution emerges for some (but not all) areas over long timescales

    Thermo-physical properties and hydration of the Martian surface

    No full text
    Ce travail de thèse est consacré à la caractérisation physique de la surface de Mars et à l'étude des facteurs dynamiques la modifiant. Deux aspects sont étudiés. Le premier concerne les propriétés thermo-physiques qui sont un moyen de contraindre les actions que les forces érosives et sédimentaires cumulées sur les temps géologiques ont joué à la surface de Mars. Le second est l'hydratation de la surface de Mars qui est une donnée importante du système climatique martien en tant que réservoir d'eau.Afin de caractériser ces deux propriétés physiques de la surface de Mars, nous avons combiné l'approche orbitale permettant une couverture globale, l'approche in situ qui fournit une interprétation locale robuste et l'utilisation d'outils de simulation des processus physiques. Les données des instruments OMEGA, un spectro-imageur à bord de Mars Express en orbite autour de Mars depuis 2004, et le capteur de température de surface de l'instrument REMS, embarqué à bord de Curiosity et en opération dans le cratère Gale depuis 2012 ont été analysées en détail. Les mesures de température de surface de ces deux instruments ont été inversées pour caractériser les propriétés thermo-physiques de la surface au moyen d'un modèle climatique. Nous présentons la première carte globale de l'inertie thermique de la surface de Mars calculées à partir des données OMEGA et nous mettons en évidence de manière inédite des comportements thermiques spécifiques d'assemblages hétérogènes à la surface de Mars ou de processus physiques négligés.Les informations relatives à l'hydratation de la surface ont pu être extraites des données OMEGA grâce à la prise en compte de mesures en laboratoire et ont été interprétées de concert avec les résultats de plusieurs missions autour ou à la surface de Mars et des simulations climatiques du cycle de l'eau afin de reconstruire l'histoire de cette hydratation. Nous trouvons que l'hydratation est stable tout au long de l'année martienne et qu'elle augmente avec la latitude de manière asymétrique entre les deux hémisphères. La distribution spatiale de l'hydratation coincide avec les zones en contact régulier avec des dépôts de givre, qui apparaît ainsi être à l'origine du processus responsable de l'implémentation de l'eau dans le régolite martien.This thesis work is devoted to the physical characterization of the Martian surface and to the study of dynamic processes modifying it. Two aspects are addressed. The first concerns the thermo-physical properties which are a mean to putting constraints on to the erosive and sedimentary actions summed over the geologic history. The second is the hydration of the Martian surface which plays, as a planetary reservoir of water, an important role on the Martian climate.In order to characterize these two physical parameters of the Martian surface, we have combined the orbital view which allows a global coverage with in situ measurements, which provides a robust local interpretation, and we have used tools allowing numerical simulations of physical processes. Data from OMEGA, an imaging spectrometer onboard Mars Express orbiting Mars since 2004, and from the ground temperature sensor of the REMS instrument onboard Curiosity have been analyzed in details. Surface temperature measurements from these two instruments have been inverted using a climate model for characterizing the thermo-physical properties of the Martian surface. We present the first global map of the Martian surface thermal inertia constructed from OMEGA data and we directly highlight for the first time some thermal behavior caused by heterogeneous mixtures or neglected physical processes at the surface of Mars.Information regarding the hydration of the Martian surface have been extracted from OMEGA data using a large set of laboratory experiments. This information has been interpreted together with scientific results from multiple mission orbiting or at the surface of Mars and with numerical simulations of the Martian water cycle in order to reconstruct the history of this hydration. We find that the hydration remains stable throughout the whole Martian year and that it increases with latitude with an asymetry between the two hemispheres. The spatial distribution of the hydration fits areas that are in regular contact with water frost, which therefore seems to be involved in the process of water implementation in the Martian regolith

    Propriétés thermo-physiques et hydratation de la surface de Mars

    No full text
    This thesis work is devoted to the physical characterization of the Martian surface and to the study of dynamic processes modifying it. Two aspects are addressed. The first concerns the thermo-physical properties which are a mean to putting constraints on to the erosive and sedimentary actions summed over the geologic history. The second is the hydration of the Martian surface which plays, as a planetary reservoir of water, an important role on the Martian climate.In order to characterize these two physical parameters of the Martian surface, we have combined the orbital view which allows a global coverage with in situ measurements, which provides a robust local interpretation, and we have used tools allowing numerical simulations of physical processes. Data from OMEGA, an imaging spectrometer onboard Mars Express orbiting Mars since 2004, and from the ground temperature sensor of the REMS instrument onboard Curiosity have been analyzed in details. Surface temperature measurements from these two instruments have been inverted using a climate model for characterizing the thermo-physical properties of the Martian surface. We present the first global map of the Martian surface thermal inertia constructed from OMEGA data and we directly highlight for the first time some thermal behavior caused by heterogeneous mixtures or neglected physical processes at the surface of Mars.Information regarding the hydration of the Martian surface have been extracted from OMEGA data using a large set of laboratory experiments. This information has been interpreted together with scientific results from multiple mission orbiting or at the surface of Mars and with numerical simulations of the Martian water cycle in order to reconstruct the history of this hydration. We find that the hydration remains stable throughout the whole Martian year and that it increases with latitude with an asymetry between the two hemispheres. The spatial distribution of the hydration fits areas that are in regular contact with water frost, which therefore seems to be involved in the process of water implementation in the Martian regolith.Ce travail de thèse est consacré à la caractérisation physique de la surface de Mars et à l'étude des facteurs dynamiques la modifiant. Deux aspects sont étudiés. Le premier concerne les propriétés thermo-physiques qui sont un moyen de contraindre les actions que les forces érosives et sédimentaires cumulées sur les temps géologiques ont joué à la surface de Mars. Le second est l'hydratation de la surface de Mars qui est une donnée importante du système climatique martien en tant que réservoir d'eau.Afin de caractériser ces deux propriétés physiques de la surface de Mars, nous avons combiné l'approche orbitale permettant une couverture globale, l'approche in situ qui fournit une interprétation locale robuste et l'utilisation d'outils de simulation des processus physiques. Les données des instruments OMEGA, un spectro-imageur à bord de Mars Express en orbite autour de Mars depuis 2004, et le capteur de température de surface de l'instrument REMS, embarqué à bord de Curiosity et en opération dans le cratère Gale depuis 2012 ont été analysées en détail. Les mesures de température de surface de ces deux instruments ont été inversées pour caractériser les propriétés thermo-physiques de la surface au moyen d'un modèle climatique. Nous présentons la première carte globale de l'inertie thermique de la surface de Mars calculées à partir des données OMEGA et nous mettons en évidence de manière inédite des comportements thermiques spécifiques d'assemblages hétérogènes à la surface de Mars ou de processus physiques négligés.Les informations relatives à l'hydratation de la surface ont pu être extraites des données OMEGA grâce à la prise en compte de mesures en laboratoire et ont été interprétées de concert avec les résultats de plusieurs missions autour ou à la surface de Mars et des simulations climatiques du cycle de l'eau afin de reconstruire l'histoire de cette hydratation. Nous trouvons que l'hydratation est stable tout au long de l'année martienne et qu'elle augmente avec la latitude de manière asymétrique entre les deux hémisphères. La distribution spatiale de l'hydratation coincide avec les zones en contact régulier avec des dépôts de givre, qui apparaît ainsi être à l'origine du processus responsable de l'implémentation de l'eau dans le régolite martien

    Formation of mesospheric clouds on Mars: new model results based on updated parameters

    No full text
    International audienceMesospheric clouds have been observed on Mars for about 15 years. Microphysical modeling studies have provided evidence that an exogenous Ice Nucleus (IN) source is needed to form these clouds. These IN are probably Meteor Smoke Particles (MSPs) as in the Earth's mesosphere. Recent studies have provided new information on the properties of the MSPs and of CO2 ice: we are presenting here updated results using these new parameters

    Mapping the mesospheric CO<sub>2</sub> clouds on Mars

    No full text
    International audienceThis climatology of martian clouds will enable us to better characterise the mesospheric structure and dynamics, as very specific conditions (especially low temperatures and a source of condensation nuclei) are required for CO2 ice condensation

    Solar Albedo High Resolution Global Map of the Martian Surface from OMEGA/MEX

    No full text
    International audienceWe present a global map of solar albedo derived from OMEGA data. It is the highest resolution map of this key parameter for climate modelling and TI retrievals

    Martian GCM with complete CO<sub>2</sub> clouds microphysics

    No full text
    International audienceTowards understanding Martian CO2 cloud formation, abundance and features, including their formation and evolution in a Global Climate Model (GCM) is necessary. Their precise radiative impact on the climate throughout the history of the planet is especially of prime importance due to the backscattering of the infrared photons by the CO2 ice crystals that might have contributed to a greenhouse effect. The purpose of this work is to include a complete and validated CO2 cloud scheme (developped by [1,2]) in the GCM of the Laboratoire de Météorologie Dynamique (LMD) [3]. We hereafter present the key steps of this coupling and the first results

    Modeling CO<sub>2</sub> ice clouds with a Mars Global Climate Model

    No full text
    International audienceSince the first claimed detection of CO2 ice clouds by the Mariner campaign (Herr and Pimentel, 1970), more recent observations and modelling works have put new constraints concerning their altitude, region, time and mechanisms of formation (Clancy and Sandor, 1998; Montmessin et al., 2007; Colaprete et al., 2008; Määttänen et al., 2010; Vincendon et al., 2011; Spiga et al. 2012; Listowski et al. 2014). CO2 clouds are observed at the poles at low altitudes (2 clouds's variability and dynamics remain somehow elusive.Towards an understanding of Martian CO2 clouds and especially of their precise radiative impact on the climate throughout the history of the planet, including their formation and evolution in a Global Climate Model (GCM) is necessary.Adapting the CO2 clouds microphysics modeling work of Listowski et al. (2013; 2014), we aim at implementing a complete CO2 clouds scheme in the GCM of the Laboratoire de Météorologie Dynamique (LMD, Forget et al., 1999). It covers CO2 microphysics, growth, evolution and dynamics with a methodology inspired from the water ice clouds scheme recently included in the LMD GCM (Navarro et al., 2014).Two main factors control the formation and evolution of CO2 clouds in the Martian atmosphere: sufficient supersaturation of CO2 is needed and condensation nuclei must be available. Topography-induced gravity-waves (GW) are expected to propagate to the upper atmosphere where they produce cold pockets of supersaturated CO2 (Spiga et al., 2012), thus allowing the formation of clouds provided enough condensation nuclei are present. Such supersaturations have been observed by various instruments, in situ (Schofield et al., 1997) and from orbit (Montmessin et al., 2006, 2011; Forget et al., 2009).Using a GW-induced temperature profile and the 1-D version of the GCM, we simulate the formation of CO2 clouds in the mesosphere and investigate the sensitivity of our microphysics scheme. First results and steps towards the integration in the 3-D GCM will be presented and discussed at the conference.This work is funded by the Laboratory of Excellence ESEP

    A complete CO<sub>2</sub> ice clouds model for GCMs and mesoscale models

    No full text
    International audienceThe purpose of this work is to include a complete and validated CO2 cloud scheme (developped by Lis- towski et al., 2013, 2014) in the GCM of the Labora- toire de Météorologie Dynamique (LMD) (Forget et al., 1999). We hereafter present the key steps of this coupling and the first results
    corecore