1,127 research outputs found

    A scenario of mitochondrial genome evolution in maize based on rearrangement events

    Get PDF
    Background: Despite their monophyletic origin, animal and plant mitochondrial genomes have been described as exhibiting different modes of evolution. Indeed, plant mitochondrial genomes feature a larger size, a lower mutation rate and more rearrangements than their animal counterparts. Gene order variation in animal mitochondrial genomes is often described as being due to translocation and inversion events, but tandem duplication followed by loss has also been proposed as an alternative process. In plant mitochondrial genomes, at the species level, gene shuffling and duplicate occurrence are such that no clear phylogeny has ever been identified, when considering genome structure variation. Results: In this study we analyzed the whole sequences of eight mitochondrial genomes from maize and teosintes in order to comprehend the events that led to their structural features, i.e. the order of genes, tRNAs, rRNAs, ORFs, pseudogenes and non-coding sequences shared by all mitogenomes and duplicate occurrences. We suggest a tandem duplication model similar to the one described in animals, except that some duplicates can remain. Thi

    Phosphorylated ERK5/BMK1 transiently accumulates within division spindles in mouse oocytes and preimplantation embryos

    Get PDF
    MAP kinases of the ERK family play important roles in oocyte maturation, fertilization, and early embryo development. The role of the signaling pathway involving ERK5 MAP kinase during meiotic and mitotic M-phase of the cell cycle is not well known. Here, we studied the localization of the phosphorylated, and thus potentially activated, form of ERK5 in mouse maturing oocytes and mitotically dividing early embryos. We show that phosphorylation/dephosphorylation, i.e. likely activation/inactivation of ERK5, correlates with M-phase progression. Phosphorylated form of ERK5 accumulates in division spindle of both meiotic and mitotic cells, and precisely co-localizes with spindle microtubules at metaphase. This localization changes drastically in the anaphase, when phospho-ERK5 completely disappears from microtubules and transits to the cytoplasmic granular, vesicle-like structures. In telophase oocytes it becomes incorporated into the midbody. Dynamic changes in the localization of phospho-ERK5 suggests that it may play an important role both in meiotic and mitotic division. (Folia Histochemica et Cytobiologica 2011, Vol. 49, No. 3, 528–534

    Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry

    Get PDF
    NaSICON-type lithium conductor Li1.3Al0.3Ti1.7(PO4)3 (LATP) is synthesized with controlled grain size and composition using solution chemistry. After thermal treatment at 850 C, sub-micronic crystallized powders with high purity are obtained. They are converted into ceramic through Spark Plasma Sintering at 850–1000 C. By varying the processing parameters, pellet with conductivities up to 1.6 * 10−4 S/cm with density of 97% of the theoretical density have been obtained. XRD, FEG-SEM, ac-impedance and Vickers indentation were used to characterize the products. The influence of sintering parameters on pellet composition, microstructure and conductivity is discussed in addition to the analysis of the mechanical behavior of the grains interfaces

    Aurora A contributes to p150ᔍⁱᔘᔉᔈ phosphorylation and function during mitosis

    Get PDF
    Aurora A is a spindle pole–associated protein kinase required for mitotic spindle assembly and chromosome segregation. In this study, we show that Drosophila melanogaster aurora A phosphorylates the dynactin subunit p150ᔍⁱᔘᔉᔈ on sites required for its association with the mitotic spindle. Dynactin strongly accumulates on microtubules during prophase but disappears as soon as the nuclear envelope breaks down, suggesting that its spindle localization is tightly regulated. If aurora A's function is compromised, dynactin and dynein become enriched on mitotic spindle microtubules. Phosphorylation sites are localized within the conserved microtubule-binding domain (MBD) of the p150ᔍⁱᔘᔉᔈ. Although wild-type p150ᔍⁱᔘᔉᔈ binds weakly to spindle microtubules, a variant that can no longer be phosphorylated by aurora A remains associated with spindle microtubules and fails to rescue depletion of endogenous p150ᔍⁱᔘᔉᔈ. Our results suggest that aurora A kinase participates in vivo to the phosphoregulation of the p150ᔍⁱᔘᔉᔈ MBD to limit the microtubule binding of the dynein–dynactin complex and thus regulates spindle assembly

    Aurora A contributes to p150ᔍⁱᔘᔉᔈ phosphorylation and function during mitosis

    Get PDF
    Aurora A is a spindle pole–associated protein kinase required for mitotic spindle assembly and chromosome segregation. In this study, we show that Drosophila melanogaster aurora A phosphorylates the dynactin subunit p150ᔍⁱᔘᔉᔈ on sites required for its association with the mitotic spindle. Dynactin strongly accumulates on microtubules during prophase but disappears as soon as the nuclear envelope breaks down, suggesting that its spindle localization is tightly regulated. If aurora A's function is compromised, dynactin and dynein become enriched on mitotic spindle microtubules. Phosphorylation sites are localized within the conserved microtubule-binding domain (MBD) of the p150ᔍⁱᔘᔉᔈ. Although wild-type p150ᔍⁱᔘᔉᔈ binds weakly to spindle microtubules, a variant that can no longer be phosphorylated by aurora A remains associated with spindle microtubules and fails to rescue depletion of endogenous p150ᔍⁱᔘᔉᔈ. Our results suggest that aurora A kinase participates in vivo to the phosphoregulation of the p150ᔍⁱᔘᔉᔈ MBD to limit the microtubule binding of the dynein–dynactin complex and thus regulates spindle assembly

    Extreme tooth enlargement in a new Late Cretaceous rhabdodontid dinosaur from Southern France

    Get PDF
    International audienceRhabdodontidae is a successful clade of ornithopod dinosaurs, characteristic of Late Cretaceous continental faunas in Europe. A new rhabdodontid from the late Campanian, of southern France, Matheronodon provincialis gen. et sp. nov., is characterized by the extreme enlargement of both its maxillary and dentary teeth, correlated to a drastic reduction in the number of maxillary teeth (4 per generation in MMS/VBN-02-102). The interalveolar septa on the maxilla are alternately present or resorbed ventrally so as to be able to lodge such enlarged teeth. The rhabdodontid dentition and masticatory apparatus were adapted for producing a strict and powerful shearing action, resembling a pair of scissors. With their relatively simple dentition, contrasting with the sophisticated dental batteries in contemporary hadrosaurids, Matheronodon and other rhabdodontids are tentatively interpreted as specialized consumers of tough plant parts rich in sclerenchyma fibers, such as Sabalites and Pandanites

    Three years continuous record of the Earth’s magnetic field at Concordia Station (DomeC, Antarctica)

    Get PDF
    The magnetic observatory deployed at DomeC, Antarctica, in the French-Italian base known as Concordia hasnow been permanently running for more than three years. This paper focuses on these long-term results whichare more relevant for an observatory intended to provide absolute values of the field. The problems whichemerged in this fairly long record are discussed and solutions suggested to upgrade the observatory to the standardsof an absolute one (i.e. Intermagnet standards).Mailing address: Dr. Aude Chambodut, Ecole et Observatoiredes Sciences de la Terre 5, rue Descartes 67084, StrasbourgCedex, France; e-mail: [email protected]

    Dense on Porous Solid LATP Electrolyte System: Preparation and Conductivity Measurement

    Get PDF
    A dense membrane of lithium aluminum titanium phosphate Li1+xAlxTi2-x(PO4)3, x=0.3 (LATP) is deposited on a porous LATP substrate via wet chemistry. In the polymerized complex process, phosphate precursors with different active groups and steric hindrance are selected to tune precursor’s reactivity. Rheological studies and microstructural observations lead to the selection of an LATP powder slurry charged with lithium, aluminum, titanium, and phosphate ion precursors. The optimized formulation is impregnated into a porous LATP substrate. After thermal treatment, dense LATP membranes on top of a porous LATP substrate are obtained with conductivities as high as 3 x 10-4 S/cm for the dense part, the porous part acting as a mechanical support. An original Van der Pauw impedance setup is validated for the measurement of the ionic conductivity of such dense/ porous systems

    CDK11p58 Is Required for Centriole Duplication and Plk4 Recruitment to Mitotic Centrosomes

    Get PDF
    BACKGROUND: CDK11(p58) is a mitotic protein kinase, which has been shown to be required for different mitotic events such as centrosome maturation, chromatid cohesion and cytokinesis. METHODOLOGY/PRINCIPAL FINDINGS: In addition to these previously described roles, our study shows that CDK11(p58) inhibition induces a failure in the centriole duplication process in different human cell lines. We propose that this effect is mediated by the defective centrosomal recruitment of proteins at the onset of mitosis. Indeed, Plk4 protein kinase and the centrosomal protein Cep192, which are key components of the centriole duplication machinery, showed reduced levels at centrosomes of mitotic CDK11-depleted cells. CDK11(p58), which accumulates only in the vicinity of mitotic centrosomes, directly interacts with the centriole-associated protein kinase Plk4 that regulates centriole number in cells. In addition, we show that centriole from CDK11 defective cells are not able to be over duplicated following Plk4 overexpression. CONCLUSION/SIGNIFICANCE: We thus propose that CDK11 is required for centriole duplication by two non-mutually-exclusive mechanisms. On one hand, the observed duplication defect could be caused indirectly by a failure of the centrosome to fully maturate during mitosis. On the other hand, CDK11(p58) could also directly regulate key centriole components such as Plk4 during mitosis to trigger essential mitotic centriole modifications, required for centriole duplication during subsequent interphase
    • 

    corecore