35 research outputs found

    Attenuation of Soft-Tissue Sarcomas Resistance to the Cytotoxic Action of TNF-α by Restoring p53 Function

    Get PDF
    BACKGROUND: Isolated limb perfusion with TNF-α and melphalan is used with remarkable efficiency to treat unresectable limb sarcomas. Here we tested the ability of TNF-α to directly induce apoptosis of sarcoma cells. In addition, we investigated the impact of p53 in the regulation of such effect. METHODOLOGY/PRINCIPAL FINDINGS: We first analysed the ability of TNF-α to induce apoptosis in freshly isolated tumour cells. For this purpose, sarcoma tumours (n = 8) treated ex vivo with TNF-α were processed for TUNEL staining. It revealed substantial endothelial cell apoptosis and levels of tumour cell apoptosis that varied from low to high. In order to investigate the role of p53 in TNF-α-induced cell death, human sarcoma cell lines (n = 9) with different TP53 and MDM2 status were studied for their sensitivity to TNF-α. TP53(Wt) cell lines were sensitive to TNF-α unless MDM2 was over-expressed. However, TP53(Mut) and TP53(Null) cell lines were resistant. TP53 suppression in TP53(Wt) cell lines abrogated TNF-α sensitivity and TP53 overexpression in TP53(Null) cell lines restored it. The use of small molecules that restore p53 activity, such as CP-31398 or Nutlin-3a, in association with TNF-α, potentiated the cell death of respectively TP53(Mut) and TP53(Wt)/MDM2(Ampl). In particular, CP-31398 was able to induce p53 as well as some of its apoptotic target genes in TP53(Mut) cells. In TP53(Wt)/MDM2(Ampl) cells, Nutlin-3a effects were associated with a decrease of TNF-α-induced NF-κB-DNA binding and correlated with a differential regulation of pro- and anti-apoptotic genes such as TP53BP2, GADD45, TGF-β1 and FAIM. CONCLUSION/SIGNIFICANCE: More effective therapeutic approaches are critically needed for the treatment of unresectable limb sarcomas. Our results show that restoring p53 activity in sarcoma cells correlated with increased sensitivity to TNF-α, suggesting that this strategy may be an important determinant of TNF-α-based sarcomas treatment

    CD99 isoforms regulate CD1a expression in human monocyte-derived DCs through ATF-2/CREB-1 phosphorylation

    No full text
    International audienceCD1a expression is considered one of the major characteristics qualifying in vitro human dendritic cells (DCs) during their generation process. Here, we report that CD1A transcription is regulated by a mechanism involving the long and short isoforms of CD99. Using a lentiviral construct encoding for a CD99 short hairpin RNA, we were able to inhibit CD99 expression in human primary DCs. In such cells, CD1a membrane expression increased and CD1A transcripts were much higher in abundance compared to cells expressing CD99 long form (CD99LF). We also show that CD1A transcription is accompanied by a switch in expression from CD99LF to expression at comparable levels of both CD99 isoforms during immature DCs generation in vitro. We demonstrate that CD99LF maintains a lower level of CD1A transcription by up-regulating the phosphorylated form of the ATF-2 transcription factor and that CD99 short form (SF) is required to counteract this regulatory mechanism. Elucidation of the molecular mechanisms related to CD99 alternative splicing will be very helpful to better understand the transcriptional regulatory mechanism of CD1a molecules during DCs differentiation and its involvement in the immune response

    Hypoxia-dependent inhibition of tumor cell susceptibility to CTL-mediated lysis involves NANOG induction in target cells.

    No full text
    International audienceHypoxia is a major feature of the solid tumor microenvironment and is known to be associated with tumor progression and poor clinical outcome. Recently, we reported that hypoxia protects human non-small cell lung tumor cells from specific lysis by stabilizing hypoxia-inducible factor-1α and inducing STAT3 phosphorylation. In this study, we show that NANOG, a transcription factor associated with stem cell self renewal, is a new mediator of hypoxia-induced resistance to specific lysis. Our data indicate that under hypoxic conditions, NANOG is induced at both transcriptional and translational levels. Knockdown of the NANOG gene in hypoxic tumor cells is able to significantly attenuate hypoxia-induced tumor resistance to CTL-dependent killing. Such knockdown correlates with an increase of target cell death and an inhibition of hypoxia-induced delay of DNA replication in these cells. Interestingly, NANOG depletion results in inhibition of STAT3 phosphorylation and nuclear translocation. To our knowledge, this study is the first to show that hypoxia-induced NANOG plays a critical role in tumor cell response to hypoxia and promotes tumor cell resistance to Ag-specific lysis

    Cherubism allele heterozygosity amplifies microbe-induced inflammatory responses in murine macrophages.

    No full text
    International audienceCherubism is a rare autoinflammatory bone disorder that is associated with point mutations in the SH3-domain binding protein 2 (SH3BP2) gene, which encodes the adapter protein 3BP2. Individuals with cherubism present with symmetrical fibro-osseous lesions of the jaw, which are attributed to exacerbated osteoclast activation and defective osteoblast differentiation. Although it is a dominant trait in humans, cherubism appears to be recessively transmitted in mice, suggesting the existence of additional factors in the pathogenesis of cherubism. Here, we report that macrophages from 3BP2-deficient mice exhibited dramatically reduced in ammatory responses to microbial challenge and reduced phagocytosis. 3BP2 was necessary for LPS-induced activation of signaling pathways involved in macrophage function, including SRC, VAV1, p38MAPK, IKKα/β, RAC, and actin polymerization pathways. Conversely, we demonstrated that the presence of a single Sh3bp2 cherubic allele and pathogen-associated molecular pattern (PAMP) stimulation had a strong cooperative effect on macrophage activation and inflammatory responses in mice. Together, the results from our study in murine genetic models support the notion that infection may represent a driver event in the etiology of cherubism in humans and suggest limiting inflammation in affected individuals may reduce manifestation of cherubic lesions

    Invasive dedifferentiated melanoma cells inhibit JAK1-STAT3-driven actomyosin contractility of human fibroblastic reticular cells of the lymph node

    No full text
    Abstract Fibroblastic reticular cells (FRC) are immunologically specialized fibroblasts controlling the size and microarchitecture of the lymph node (LN), partly through their contractile properties. Swelling is a hallmark of tumor-draining LN in lymphophilic cancers such as cutaneous melanoma, a very aggressive and heterogeneous tumor with high risk of early metastasis. Melanoma cells can dynamically switch between melanocytic proliferative and dedifferentiated mesenchymal-like invasive phenotypes, which are characterized by distinct transcriptional signatures. Melanoma secreted cues, such as extracellular vesicles, growth factors or proinflammatory cytokines, promote LN stroma remodeling and metastatic spreading. But how FRC integrate these pro-metastatic signals and modulate their contractile functions remains poorly characterized. Here, we show that factors secreted by dedifferentiated melanoma cells, but not by melanocytic cells, strongly inhibit FRC actomyosin-dependent contractile forces by decreasing the activity of the RHOA-ROCK pathway and the mechano-responsive transcriptional co-activator YAP, leading to a decrease in F-actin stress fibers and cell elongation. Transcriptional profiling and biochemical analyses indicate that FRC actomyosin cytoskeleton relaxation is driven by inhibition of JAK1 and its downstream transcription factor STAT3, and is associated with increased FRC proliferation and activation. Interestingly, dedifferentiated melanoma cells reduce FRC contractility in vitro independently of extracellular vesicle secretion. These data show that FRC are specifically modulated by proteins secreted by invasive dedifferentiated melanoma cells and suggest that melanoma-derived cues could modulate the biomechanical properties of distant LN before metastatic invasion. They also highlight that JAK1-STAT3 and YAP signaling pathways contribute to the maintenance of the spontaneous contractility of resting human FRC

    Targeting the Proteasome-Associated Deubiquitinating Enzyme USP14 Impairs Melanoma Cell Survival and Overcomes Resistance to MAPK-Targeting Therapies

    No full text
    International audienceAdvanced cutaneous melanoma is one of the most challenging cancers to treat because of its high plasticity, metastatic potential, and resistance to treatment. New targeted therapies and immunotherapies have shown remarkable clinical efficacy. However, such treatments are limited to a subset of patients and relapses often occur, warranting validation of novel targeted therapies. Posttranslational modification of proteins by ubiquitin coordinates essential cellular functions, including ubiquitin-proteasome system (UPS) function and protein homeostasis. Deubiquitinating enzymes (DUB) have been associated to multiple diseases, including cancer. However, their exact involvement in melanoma development and therapeutic resistance remains poorly understood. Using a DUB trap assay to label cellular active DUBs, we have observed an increased activity of the proteasome-associated DUB, USP14 (Ubiquitin-specific peptidase 14) in melanoma cells compared with melanocytes. Our survey of public gene expression databases indicates that high expression of USP14 correlates with melanoma progression and with a poorer survival rate in metastatic melanoma patients. Knockdown or pharmacologic inhibition of USP14 dramatically impairs viability of melanoma cells irrespective of the mutational status of BRAF, NRAS, or TP53 and their transcriptional cell state, and overcomes resistance to MAPK-targeting therapies both in vitro and in human melanoma xenografted mice. At the molecular level, we find that inhibition of USP14 rapidly triggers accumulation of poly-ubiquitinated proteins and chaperones, mitochondrial dysfunction, ER stress, and a ROS production leading to a caspase-independent cell death. Our results provide a rationale for targeting the proteasome-associated DUB USP14 to treat and combat melanomas. Mol Cancer Ther; 17(7); 1416-29. ©2018 AACR

    Co-Expression of Androgen Receptor and Cathepsin D Defines a Triple-Negative Breast Cancer Subgroup with Poorer Overall Survival

    No full text
    International audienceBackground: In the triple-negative breast cancer (TNBC) group, the luminal androgen receptor subtype is characterized by expression of androgen receptor (AR) and lack of estrogen receptor and cytokeratin 5/6 expression. Cathepsin D (Cath-D) is overproduced and hypersecreted by breast cancer (BC) cells and is a poor prognostic marker. We recently showed that in TNBC, Cath-D is a potential target for antibody-based therapy. This study evaluated the frequency of AR/Cath-D co-expression and its prognostic value in a large series of patients with non-metastatic TNBC. Methods: AR and Cath-D expression was evaluated by immunohistochemistry in 147 non-metastatic TNBC. The threshold for AR positivity (AR+) was set at ≥1% of stained cells, and the threshold for Cath-D positivity (Cath-D+) was moderate/strong staining intensity. Lymphocyte density, macrophage infiltration, PD-L1 and programmed cell death (PD-1) expression were assessed. Results: Scarff-Bloom-Richardson grade 1–2 and lymph node invasion were more frequent, while macrophage infiltration was less frequent in AR+/Cath-D+ tumors (62.7%). In multivariate analyses, higher tumor size, no adjuvant chemotherapy and AR/Cath-D co-expression were independent prognostic factors of worse overall survival. Conclusions: AR/Cath-D co-expression independently predicted overall survival. Patients with TNBC in which AR and Cath-D are co-expressed could be eligible for combinatory therapy with androgen antagonists and anti-Cath-D human antibodies

    Targeting DDR1 and DDR2 overcomes matrix-mediated melanoma cell adaptation to BRAF-targeted therapy

    No full text
    Resistance to BRAF and MEK inhibitors in BRAF V600E mutant melanomas remains a major obstacle that limits patient benefit. Microenvironment components including the extracellular matrix (ECM) can support tumor cell adaptation and tolerance to targeted therapies, however the underlying mechanisms remain poorly understood. Here, we investigated the process of matrix-mediated drug resistance (MM-DR) in response to BRAF inhibition in melanoma. We demonstrate that physical and structural cues from fibroblast-derived ECM abrogate anti-proliferative responses to BRAF/MEK inhibition. MM-DR is mediated by the drug-induced clustering of DDR1 and DDR2, two tyrosine kinase collagen receptors. Genetic depletion and pharmacological inhibition of DDR1 and DDR2 overcome ECM-mediated resistance to BRAF inhibition. In melanoma xenografts, targeting DDRs by Imatinib enhances BRAF inhibitor efficacy, counteracts drug-induced collagen remodeling and delays tumor relapse. Mechanistically, DDR-mediated MM-DR fosters a targetable pro-survival NIK/IKKα/NF-κB2 pathway. Our study reveals a novel role of collagen-rich matrix and DDRs in tumor cell adaptation and therapy resistance, thus providing important insights into environment-mediated drug resistance and a pre-clinical rationale for targeting DDR1/2 signaling in combination with BRAF-targeted therapy in melanoma
    corecore