34 research outputs found

    Climate Projections Very Likely Underestimate Future Volcanic Forcing and Its Climatic Effects

    Get PDF
    Standard climate projections represent future volcanic eruptions by a constant forcing inferred from 1850 to 2014 volcanic forcing. Using the latest ice-core and satellite records to design stochastic eruption scenarios, we show that there is a 95% probability that explosive eruptions could emit more sulfur dioxide (SO2) into the stratosphere over 2015–2100 than current standard climate projections (i.e., ScenarioMIP). Our simulations using the UK Earth System Model with interactive stratospheric aerosols show that for a median future eruption scenario, the 2015–2100 average global-mean stratospheric aerosol optical depth (SAOD) is double that used in ScenarioMIP, with small-magnitude eruptions (<3 Tg of SO2) contributing 50% to SAOD perturbations. We show that volcanic effects on large-scale climate indicators, including global surface temperature, sea level and sea ice extent, are underestimated in ScenarioMIP because current climate projections do not fully account for the recurrent frequency of volcanic eruptions of different magnitudes

    Frictional Heating Processes and Energy Budget During Laboratory Earthquakes

    Get PDF
    International audienceDuring an earthquake, part of the released elastic strain energy is dissipated within the slip zone by frictional and fracturing processes, the rest being radiated away via elastic waves. While frictional heating plays a key role in the energy budget of earthquakes, it could not be resolved by seismological data up to now. Here we investigate the dynamics of laboratory earthquakes by measuring frictional heat dissipated during the propagation of shear instabilities at stress conditions typical of seismogenic depths. We estimate the complete energy budget of earthquake rupture and demonstrate that the radiation efficiency increases with thermal-frictional weakening. Using carbon properties and Raman spectroscopy, we map spatial heat heterogeneities on the fault surface. We show that an increase in fault strength corresponds to a transition from a weak fault with multiple strong asperities and little overall radiation, to a highly radiative fault behaving as a single strong asperity. Plain Language Summary In nature, earthquakes occur when the stress accumulated in a medium is released by frictional sliding on faults. The stress released is dissipated into fracture and heat energy or radiated through seismic waves. The seismic efficiency of an earthquake is a measure of the fraction of the energy that is radiated away into the host medium. Because faults are at inaccessible depths, we reproduce earthquakes in the laboratory under natural in situ conditions to understand the physical processes leading to dynamic rupture. We estimate the first complete energy budget of an earthquake and show that increasing heat dissipation on the fault increases the radiation efficiency. We develop a novel method to illuminate areas of the fault that get excessively heated up. We finally introduce the concept of spontaneously developing heat asperities, playing a major role in the radiation of seismic waves during an earthquake

    In vivo monitoring of the corneal collagen cross-linking using supersonic shear wave imaging: feasibility study on porcine corneas

    Get PDF
    International audienceThe cornea is the main refractive component of the eye. Defects in corneal shape can reduce the visual acuity. Corneal ectasia is a case of severe deformation, which is characterized by a progressive bulging. It can occur naturally or after LASIK surgery, leading to damaged vision and ultimately blindness. Corneal cross-linking (CXL) has recently been proposed as a minimally invasive treatment to stop the disease progression. It consists in photo-reticulating the collagen fibrils to stiffen the cornea. However, this treatment is currently not monitored in real-time. Here, we propose Supersonic Shear Wave Imaging (SSI) to measure the stiffening effect of CXL. SSI elastography consists in generating and tracking a shear wave in tissues using ultrafast (30000 frames/sec) ultrasonic scanners (Aixplorer, SuperSonic Imagine). The tissue elasticity is deduced from the shear wave speed. For corneal applications, we implemented SSI on high-frequency ultrasonic arrays (15MHz). We performed in vivo CXL on anesthetized pigs combined with SSI monitoring. We obtained elastic maps after CXL that exhibited significant stiffening in the treated area (56 ± 15% of the shear wave speed) compared to the untreated area. These results demonstrated the feasibility of SSI for the in vivo and real-time monitoring of CXL

    Climate Change Predicted to Shift Wolverine Distributions, Connectivity, and Dispersal Corridors

    Get PDF
    Boreal species sensitive to the timing and duration of snow cover are particularly vulnerable to global climate change. Recent work has shown a link between wolverine (Gulo gulo) habitat and persistent spring snow cover through 15 May, the approximate end of the wolverine’s reproductive denning period. We modeled the distribution of snow cover within the Columbia, Upper Missouri, and Upper Colorado River Basins using a downscaled ensemble climate model. The ensemble model was based on the arithmetic mean of 10 global climate models (GCMs) that best fit historical climate trends and patterns within these three basins. Snow cover was estimated from resulting downscaled temperature and precipitation patterns using a hydrologic model. We bracketed our ensemble model predictions by analyzing warm (miroc 3.2) and cool (pcm1) downscaled GCMs. Because Moderate-Resolution Imaging Spectroradiometer (MODIS)-based snow cover relationships were analyzed at much finer grain than downscaled GCM output, we conducted a second analysis based on MODIS-based snow cover that persisted through 29 May, simulating the onset of spring two weeks earlier in the year. Based on the downscaled ensemble model, 67% of predicted spring snow cover will persist within the study area through 2030–2059, and 37% through 2070–2099. Estimated snow cover for the ensemble model during the period 2070– 2099 was similar to persistent MODIS snow cover through 29 May. Losses in snow cover were greatest at the southern periphery of the study area (Oregon, Utah, and New Mexico, USA) and least in British Columbia, Canada. Contiguous areas of spring snow cover become smaller and more isolated over time, but large (.1000 km2) contiguous areas of wolverine habitat are predicted to persist within the study area throughout the 21st century for all projections. Areas that retain snow cover throughout the 21st century are British Columbia, north-central Washington, northwestern Montana, and the Greater Yellowstone Area. By the late 21st century, dispersal modeling indicates that habitat isolation at or above levels associated with genetic isolation of wolverine populations becomes widespread. Overall, we expect wolverine habitat to persist throughout the species range at least for the first half of the 21st century, but populations will likely become smaller and more isolated

    Formation of the Isthmus of Panama

    Get PDF
    The formation of the Isthmus of Panama stands as one of the greatest natural events of the Cenozoic, driving profound biotic transformations on land and in the oceans. Some recent studies suggest that the Isthmus formed manymillions of years earlier than the widely recognized age of approximately 3 million years ago (Ma), a result that if true would revolutionize our understanding of environmental, ecological, and evolutionary change across the Americas. To bring clarity to the question of when the Isthmus of Panama formed, we provide an exhaustive review and reanalysis of geological, paleontological, and molecular records. These independent lines of evidence converge upon a cohesive narrative of gradually emerging land and constricting seaways,withformationof theIsthmus of Panama sensustricto around 2.8 Ma. The evidence used to support an older isthmus is inconclusive, and we caution against the uncritical acceptance of an isthmus before the Pliocene.Facultad de Ciencias Naturales y Muse

    Model for humidity-mediated diffusion on aluminum surfaces and its role in accelerating atmospheric aluminum corrosion

    No full text
    Bare aluminum metal surfaces are highly reactive, which leads to the spontaneous formation of a protective oxide surface layer. Because many subsequent corrosive processes are mediated by water, the structure and dynamics of water at the oxide interface are anticipated to influence corrosion kinetics. Using molecular dynamics simulations with a reactive force field, we model the behavior of aqueous aluminum metal ions in water adsorbed onto aluminum oxide surfaces across a range of ion concentrations and water film thicknesses corresponding to increasing relative humidity. We find that the structure and diffusivity of both the water and the metal ions depends strongly on the humidity of the environment and the relative height within the adsorbed water film.Aqueous aluminum ion diffusion rates in water films corresponding to a typical indoor relative humidity of 30% are found to be more than two orders of magnitude slower than self-diffusion of water in the bulk limit. Connections between metal ion diffusivity and corrosion reaction kinetics are assessed parametrically with a reductionist model based on a 1D continuum reaction-diffusion equation. Our results highlight the importance of incorporating the properties specific to interfacial water in predictive models of aluminum corrosion

    Identification of novel carbohydrate modifications on Campylobacter jejuni 11168 flagellin using metabolomics-based approaches

    No full text
    It is well known that the flagellin of Campylobacter jejuni is extensively glycosylated by pseudaminic acid and the related acetamindino derivative, in addition to flagellin glycosylation being essential for motility and colonization of host cells. Recently, the use of metabolomics permitted the unequivocal characterization of unique flagellin modifications in Campylobacter, including novel legionaminic acid sugars in Campylobacter coli, which had been impossible to ascertain in earlier studies using proteomics-based approaches. To date, the precise identities of the flagellin glycosylation modifications have only been elucidated for C. jejuni 81-176 and C. coli VC167 and those present in the first genome-sequenced strain C. jejuni 11168 remain elusive due to lability and respective levels of individual glycan modifications. We report the characterization of the carbohydrate modifications on C. jejuni 11168 flagellin using metabolomics-based approaches. Detected as their corresponding CMP-linked precursors, structural information on the flagellin modifications was obtained using a combination of MS and NMR spectroscopy. In addition to the pseudaminic acid and legionaminic acid sugars known to be present on Campylobacter flagellin, two unusual 2,3-di-O-methylglyceric acid modifications of a nonulosonate sugar were identified. By performing a metabolomic analysis of selected isogenic mutants of genes from the flagellin glycosylation locus of this pathogen, these novel CMP-linked precursors were confirmed to be di-O-methylglyceric acid derivatives of pseudaminic acid and the related acetamidino sugar. This is the first comprehensive analysis of the flagellar modifications in C. jejuni 11168 and structural elucidation of di-O-methylglyceric acid derivatives of pseudaminic acid on Campylobacter flagellin.Peer reviewed: YesNRC publication: Ye
    corecore