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Ecological Applications, 21(8), 2011, pp. 2882–2897
� 2011 by the Ecological Society of America

Climate change predicted to shift wolverine distributions,
connectivity, and dispersal corridors

KEVIN S. MCKELVEY,1,5 JEFFREY P. COPELAND,1 MICHAEL K. SCHWARTZ,1 JEREMY S. LITTELL,2 KEITH B. AUBRY,3

JOHN R. SQUIRES,1 SEAN A. PARKS,4 MARKETA M. ELSNER,2 AND GUILLAUME S. MAUGER
2

1USDA Forest Service, Rocky Mountain Research Station, 800 East Beckwith, Missoula, Montana 59801 USA
2University of Washington Climate Impacts Group, 3737 Brooklyn Avenue NE, Seattle, Washington 98105 USA

3USDA Forest Service, Pacific Northwest Research Station, 3625 93rd Avenue SW, Olympia, Washington 98512 USA
4USDA Forest Service, Rocky Mountain Research Station, Aldo Leopold Wilderness Research Institute, 790 East Beckwith,

Missoula, Montana 59801 USA

Abstract. Boreal species sensitive to the timing and duration of snow cover are
particularly vulnerable to global climate change. Recent work has shown a link between
wolverine (Gulo gulo) habitat and persistent spring snow cover through 15 May, the
approximate end of the wolverine’s reproductive denning period. We modeled the distribution
of snow cover within the Columbia, Upper Missouri, and Upper Colorado River Basins using
a downscaled ensemble climate model. The ensemble model was based on the arithmetic mean
of 10 global climate models (GCMs) that best fit historical climate trends and patterns within
these three basins. Snow cover was estimated from resulting downscaled temperature and
precipitation patterns using a hydrologic model. We bracketed our ensemble model
predictions by analyzing warm (miroc 3.2) and cool (pcm1) downscaled GCMs. Because
Moderate-Resolution Imaging Spectroradiometer (MODIS)-based snow cover relationships
were analyzed at much finer grain than downscaled GCM output, we conducted a second
analysis based on MODIS-based snow cover that persisted through 29 May, simulating the
onset of spring two weeks earlier in the year. Based on the downscaled ensemble model, 67%
of predicted spring snow cover will persist within the study area through 2030–2059, and 37%
through 2070–2099. Estimated snow cover for the ensemble model during the period 2070–
2099 was similar to persistent MODIS snow cover through 29 May. Losses in snow cover were
greatest at the southern periphery of the study area (Oregon, Utah, and New Mexico, USA)
and least in British Columbia, Canada. Contiguous areas of spring snow cover become smaller
and more isolated over time, but large (.1000 km2) contiguous areas of wolverine habitat are
predicted to persist within the study area throughout the 21st century for all projections. Areas
that retain snow cover throughout the 21st century are British Columbia, north-central
Washington, northwestern Montana, and the Greater Yellowstone Area. By the late 21st
century, dispersal modeling indicates that habitat isolation at or above levels associated with
genetic isolation of wolverine populations becomes widespread. Overall, we expect wolverine
habitat to persist throughout the species range at least for the first half of the 21st century, but
populations will likely become smaller and more isolated.

Key words: climate change; corridor; downscale; ensemble model; fragmentation; Gulo gulo; habitat;
hydrologic modeling; snow; wolverine.

INTRODUCTION

Boreal species that are adapted to cold, snowy

environments are particularly susceptible to the impacts

of predicted warming trends on snowpack. Not only do

they display many specific adaptations to seasonal snow

(e.g., enlarged feet and seasonally white pelage), but

shifts in both temperature and precipitation are predict-

ed to increase in magnitude toward the poles (IPCC

2007). Additionally, vast areas of boreal forest and

tundra are relatively flat and will provide few higher

elevation refuges should climates become unsuitable for

boreal species (Loarie et al. 2009). For these reasons, the

likelihood of boreal species persisting in montane areas

at middle latitudes under global warming is of signifi-

cant interest to conservation.

The wolverine (Gulo gulo) is a boreal species that may

be particularly vulnerable to current trends in climatic

warming (see Plate 1). It was once considered to be a

habitat generalist whose geographic distribution was

dictated more by the avoidance of humans than with

specific habitat needs. However, recent research findings

have substantially altered that perspective. Consistent

with field observations indicating that all wolverine

reproductive dens are located in areas that retain snow

in the spring (Magoun and Copeland 1998), Aubry et al.

(2007) concluded that the distribution of persistent

Manuscript received 16 November 2010; revised 2 May 2011;
accepted 13 June 2011. Corresponding Editor: N. T. Hobbs.
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spring snow cover was congruent with the wolverine’s

historical distribution in the contiguous United States.

This relationship was further supported by the findings

of Schwartz et al. (2007) that showed historical

wolverine populations in the southern Sierra Nevada

of California, which occupied a geographically isolated

area of persistent spring snow cover, were genetically

isolated from northern populations.

More recently, Copeland et al. (2010) compiled most

of the extant spatial data on wolverine denning and

habitat use to test the hypotheses that wolverines require

snow cover for reproductive dens (Magoun and Cope-

land 1998), and that their geographic range is limited to

areas with persistent spring snow cover (Aubry et al.

2007). Although Aubry et al.’s (2007) analysis covered

only North America and used relatively coarse EASE-

Grid Weekly Snow Cover and Sea Ice Extent data

(Armstrong and Brodzik 2005), Copeland et al. (2010)

confirmed these relationships with finer scale snow data

(0.5-km pixels) obtained throughout the Northern

Hemisphere from the Moderate-Resolution Imaging

Spectroradiometer (MODIS) instrument on the Terra

satellite (Hall et al. 2006). Specifically, Copeland et al.

(2010) compiled and evaluated the locations of 562

reproductive dens in North America and Scandinavia in

relation to spring snow. All dens were located in snow

and 97.9% were in areas identified as being persistently

snow covered through the end of the wolverine’s

reproductive denning period (15 May; Aubry et al.

2007) based on MODIS imagery. Additionally, Cope-

land et al. (2010) found that areas characterized by

persistent spring snow cover contained 89% of all

telemetry locations from throughout the year in nine

study areas at the southern extent of current wolverine

range. Excluding areas where wolverines were known to

have been extirpated recently, persistent spring snow

cover provided a good fit to current understandings of

the wolverine’s circumboreal range (Copeland et al.

2010). Moreover, Schwartz et al. (2009) found that the

genetic structure of wolverine populations in the Rocky

Mountains was consistent with dispersal within areas

identified as being snow covered in spring, and strong

avoidance of other areas. Thus, the areas with spring

snow cover that supported reproduction (Magoun and

Copeland 1998) could also be used to predict year-round

habitat use, dispersal pathways, and both historical

(Aubry et al. 2007) and current ranges (Copeland et al.

2010).

The reasons that wolverines of both sexes remain in

areas with persistent spring snow cover throughout the

year is not well understood. Summer use of these areas

may be due to avoidance of summer heat (Hornocker

and Hash 1981, Copeland et al. 2010), prey availability

in avalanche chutes and at timberline (Krebs et al.

2007), or perhaps a combination of both. Whatever the

cause, evidence suggests that wolverines occurring at the

southern periphery of their range remain within a

relatively narrow elevation zone throughout the year

(Copeland et al. 2007). There is no evidence, either

currently or historically, that wolverine populations can

persist in other areas. For these reasons, Copeland et al.

(2010) argued that the bioclimatic niche of the wolverine

can be defined by the areal extent of persistent spring

snow cover.

The wolverine was recently evaluated for listing under

the Endangered Species Act of 1973 (16 U.S.C. 1531-

1544, 87 Stat. 884) and received ‘‘Candidate’’ status in

2010 (USFWS 2010). If, as Copeland et al. (2010) and

Aubry et al. (2007) argue, the extent of persistent spring

snow cover has constrained current and historical

distributions, then it is reasonable to assume that it will

also constrain the wolverine’s future distribution.

Consequently, for conservation planning, predicting

the future extent and distribution of persistent spring

snow cover can help identify likely areas of range loss

and persistence, and resulting patterns of connectivity.

Regional snow modeling

Choosing a global climate model.—To link future

climate projections to current and historical patterns of

wolverine habitat use requires modeling snow conditions

into the future, and relating modeled snow to the

MODIS-derived snow cover layer that Copeland et al.

(2010) and Schwartz et al. (2009) correlated with

patterns of wolverine habitat use and gene flow.

Generally, future climatic conditions are estimated using

global climate models (GCMs). There are .20 GCMs of

varying structural complexity and greenhouse gas

sensitivity, each of which can be forced with a variety

of greenhouse gas emission scenarios. Recently, the

Intergovernmental Panel on Climate Change (IPCC)

argued that ensemble-averaging more faithfully repro-

duced existing patterns of climate change than any single

model (IPCC 2007: Chapters 8 and 10). The IPCC used

23 GCMs, regardless of their bias or ‘‘skill levels’’ (IPCC

2007: Chapter 8). For finer scale regional modeling

efforts, however, it may be more useful to generate an

ensemble model based on the skill-weighted scenarios or

subset of GCMs that best model historical trends for

those regions (Macadam et al. 2010). For example, Mote

and Salathé (2010) built a weighted composite model for

the Pacific Northwest that emphasized those models that

best fit local historical climate data.

Choosing an emission scenario.—Future climate will

ultimately depend on future carbon emissions; accurate

predictive modeling hinges on assumptions about future

patterns of fossil fuel use. Unlike models that can be

compared based on their abilities to simulate historical

climate patterns, the likelihood of future emission

scenarios is unknown. The IPCC developed a total of

40 emission scenarios (Special Report on Emissions

Scenarios [SRES]; IPCC 2007, Nakicenovic et al. 2000),

but only a few are widely used for simulation modeling:

A2, representing heavy use of fossil fuels; A1B, reflecting

a rapidly growing economy but with significant move-

ment toward renewable power sources; and B1 or B2,

December 2011 2883WOLVERINES AND CLIMATE CHANGE



which represent more conservative scenarios associated

with organized efforts to reduce emissions worldwide.

Although these scenarios result in highly divergent

climatic conditions over the long term, they cluster

tightly together in the short term; during the 21st

century in the Pacific Northwest (PNW), model-to-

model variability greatly exceeds within-model differ-

ences due to different emission scenarios until at least

the mid-21st century (Mote and Salathé 2010).

Downscaling.—Because GCMs are based primarily on

mathematical models of the general circulation of the

Earth’s atmosphere, output grids are coarse in scale

(;100–300 km, or 1–5 degrees latitude/longitude) and

the underlying topography is greatly simplified. Pro-

cesses such as the buildup of snowpack at higher

elevations cannot be assessed at this scale. Therefore,

if GCM output is to be used to simulate snowpack,

results need to be downscaled. There are a variety of

downscaling methods, but two primary approaches have

been used: regional modeling, in which a finer grain

circulation model is applied (GCMs provide boundary

conditions; see Salathé et al. [2010] for an example in the

Pacific Northwest), and statistical downscaling in which

additional data such as topography and historical

precipitation patterns are used to adjust GCM outputs

to reflect local conditions (see Elsner et al. [2010] for an

example in the Pacific Northwest). Fowler et al. (2007)

provide a review of downscaling methods in the context

of hydrological modeling which, in western North

America, requires accurate estimation of snowpack.

Modeling snow.—Aubry et al. (2007), Schwartz et al.

(2009), and Copeland et al. (2010) related wolverine

habitat use and movements to persistent spring snow

cover. For a pixel to be considered snow covered by

Copeland et al. (2010), it had to be consistently covered

with snow during a 21-day period ending on 15 May.

The 21-day window had two purposes: It allowed cloud-

free observation of each pixel, and it eliminated areas

that were ephemerally snow covered but lacked residual

snowpack. Although downscaled GCMs do not provide

precise estimates that correspond to MODIS-based

snow cover data, snowpack has been modeled by

transforming downscaled GCM output using hydrologic

models designed to work with interpolated weather

station data. Wood et al. (2004) used the variable

infiltration capacity (VIC) hydrologic model (Liang et

al. 1994, Hamlet and Lettenmaier 2005) to test various

downscaling approaches in the Pacific Northwest. VIC,

which is designed to use interpolated weather data such

as Historical Climate Network (e.g., Menne et al. 2010)

or PRISM output (Daly et al. 1994, 2008), produces

variables of hydrological interest including snow water

equivalent (SWE) and snow depth.

In this paper, we modeled future patterns of persistent

spring snow cover within the Columbia, Upper Colo-

rado, and Upper Missouri River Basins using down-

scaled GCM temperature and precipitation data

transformed into snow by the VIC hydrologic model.

Using understandings of the wolverine’s bioclimatic

niche derived by Copeland et al. (2010) we transformed
these snow projections into predicted wolverine habitat

and, using approaches developed by Schwartz et al.
(2009), evaluated future changes in connectivity between

areas of wolverine habitat.

METHODS

Ensemble model selection, downscaling,
and hydrologic modeling

We used a future climate projection derived from an

ensemble mean of 10 GCMs under a single intermediate
emission scenario (A1B; Elsner et al. 2010, Littell et al.

2010, Mote and Salathé 2010) to produce climate
projections in the Columbia, Upper Missouri, and

Upper Colorado River Basins (Fig. 1). Starting with
the IPCC Fourth Assessment Report’s (AR4) suite of

models (IPCC 2007), we eliminated models with poor
cumulative performance or that routinely performed the
worst in one or more categories, leaving an ensemble of

the following 10 GCMs: bccr, cnrm_cm3, csiro_3_5,
echam5, echo_g, hadcm, hadgem1, miroc_3.2, miroc

3_2_hi, and pcm1 (Meehl et al. 2007, Littell et al. 2010).
We derived historical climate following methods in

Hamlet and Lettenmaier (2005) as implemented for the
Columbia River Basin by Elsner et al. (2010). We

generated data sets similar to those used by Elsner et al.
(2010) for the Upper Colorado and Missouri River

Basins. We interpolated local climate from historical
weather station data at 1/16 degree (latitude/longitude;

;6 km at 458 N) using PRISM (Daly et al. 1994, 2002;
see Elsner et al. [2010] for details). We inferred future

local climate patterns from each of the 10 GCMs by
downscaling to this resolution using the ‘‘delta’’ method

(e.g., Elsner et al. 2010), which assumes that local
relationships, such as relative shifts in temperature and

precipitation associated with elevation and prevalent
weather patterns, remain constant. In the delta method,

a GCM grid cell mean is fit to interpolated historical
weather data. Projections are then forecast for a future
period based on an expected emission scenario, and

differences in cell values between the historical fit and
the future projection are calculated. Downscaling is

accomplished by adding these differences (deltas) to
each cell in a fine-scale interpolated grid based on

historical data, combined with topographic influences
on temperature and precipitation. We averaged deltas

derived from the 10 GCMs to produce an ensemble
model. From these data, we developed spatially explicit

future temperature and precipitation deltas for each cell
in the model grid for the years 2030–2059 and 2070–

2099 under emission scenario A1B following methods
similar to Elsner et al. (2010; see Littell et al. [2010] for

details). In addition to the ensemble means, we produced
similar climate surfaces for relatively cool (pcm1) and
warm (miroc 3.2) models (based on evaluation of the

Columbia and Upper Missouri domain; see Littell et al.
[2010] for details) to produce a pseudo-range of

KEVIN S. MCKELVEY ET AL.2884 Ecological Applications
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potential future climatic conditions. Following methods

in Elsner et al. (2010), we used the 6-km regional

precipitation and temperature estimates derived from

the historical interpolated data, GCM ensemble, pcm1,

and miroc 3.2 to drive a hydrologic model that we used

to predict patterns of snow water equivalent (SWE) and

snow depth.

Following Elsner et al. (2010), we used the VIC

hydrologic model to transform temperature and precip-

itation into a suite of hydrological variables including

snow depth and SWE. VIC is a validated and

continuously maintained model that has been used

widely in the Pacific Northwest to estimate snowpack

volume, runoff, and streamflow (e.g., Elsner et al. 2010).

Historical Reconstruction: cross-walking between

downscaled GCM and MODIS

Schwartz et al. (2009) and Copeland et al. (2010) used

persistent snow cover through 15 May derived from

daily 0.5-km MODIS data to infer relationships between

snow cover and wolverine denning, habitat use, and

dispersal. Interpolated historical temperature and pre-

cipitation were input into VIC to model average snow

depth and SWE for the 1st of each month at 1/16-degree

resolution. Pixel-level correlations between modeled

SWE and snow depth were .99.5%; we chose snow

depth on 1May as the metric to match to MODIS-

derived persistent spring snow cover. MODIS snow

cover data were binary (snow covered or not); to convert

VIC snow depth data to a binary cover variable, we

established a threshold snow depth, whereby pixel values

greater than the threshold were classified as snow

covered. To produce the optimal fit, we searched for a

threshold that maximized the agreement between

MODIS 15 May snow cover and modeled snow depth,

and minimized areas of disagreement. Because snow

depth was evaluated for pixels 1/16 degree in size,

whereas MODIS data were at 0.5-km resolution (about

1403 as large), we resampled the VIC-generated snow

depth to 0.5-km scale while maintaining its alignment

with the MODIS coverage. We then optimized the ratio

of agreement to disagreement based on comparing the

resampled coverage to MODIS-derived snow cover

through 15 May (hereafter, the optimal fit between

snow depth and MODIS snow cover is referred to as the

Historical Reconstruction).

Simulating the onset of spring snow melt two weeks

earlier in the year

To validate our GCM analysis, we conducted a

second analysis looking at MODIS snow cover data

later in the year. Many have argued that a variety of

biological and physical attributes are occurring earlier in

the year than they did in the early- to mid-20th century.

Specifically, snow melt occurs earlier than it did 50–100

years ago (Mote et al. 2005, Knowles et al. 2006, Stewart

FIG. 1. The study area (shaded), including the Columbia, Upper Missouri, and Upper Colorado River Basins. Geographic or
administrative areas referred to in the text include (A) the North Cascades in Washington and British Columbia, (B) Glacier
National Park and Bob Marshall Wilderness in Montana, and (C) the Greater Yellowstone Area in Montana, Idaho, and
Wyoming.
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2009), consistent with the earlier onset of spring

conditions. Based on plant and animal phenology,

Menzel et al. (2006) estimated that the onset of spring/

summer has progressed at a rate of 2.5 days per decade.

Consequently, we determined how wolverine distribu-

tion and connectivity would change if it were based on

persistent snow cover through 29 May rather than 15

May, thereby forcing spring snow melt two weeks

earlier. This approach does not account for changes in

winter temperature and precipitation patterns (i.e., it

does not predict future climates), but it is based on the

same data as previous analyses of wolverine habitat use

and dispersal (Schwartz et al. 2009, Copeland et al.

2010). Thus, errors associated with localizing and

downscaling GCMs, transforming temperature and

precipitation data into snow cover through VIC (Liang

et al. 1994, Hamlet and Lettenmaier 2005), and cross-

walking GCM-based snow depth to MODIS-based

snow cover are eliminated.

Predicting future snow cover and its influence on patterns

of wolverine habitat use and dispersal

Schwartz et al. (2009) used methods in which

landscape features were transformed into putative

movement costs that were used to derive matrices of

least-cost paths among individuals. Associated costs

were then correlated with matrices of genetic relatedness

among individuals (Manel et al. 2003, Coulon et al.

2006, Cushman et al. 2006, 2009). Using these methods,

genetic patterns best fit snow-covered landscapes when

the costs associated with traveling within areas of snow

cover were 1/20 the costs of movements outside those

areas. Schwartz et al. (2009) found that indications of

genetic isolation in the Little Belt and Crazy Mountains

in Montana correlated with higher movement costs to

and from those areas. Because map boundaries differed,

we repeated the analyses in Schwartz et al. (2009) and,

assuming the same 1/20 cost ratio for traveling within

rather than outside snow-covered areas, applied these

methods to the Historical Reconstruction. We used the

average costs associated with the Little Belt and Crazy

Mountains derived from MODIS-based snow cover

through 15 May and the Historical Reconstruction to

infer areas of genetic isolation associated with MODIS-

based snow cover through 29 May and GCM-based

projections, respectively.

RESULTS

GCM model selection, downscaling, and performance

Seven GCMs (bccr, echam5, echo_g, hadcm, hadgem1,

miroc_3.2, and pcm1) performed consistently well in

most metrics (e.g., annual precipitation and temperature

trend) for all three river basins. The models fgoals1_0_g,

gfdl_cm2_1, giss_aom, and ipsl_cm4 were less consistent

across metrics and basins, and no models routinely

performed best in all metrics. Other models (e.g., ccsm3,

both cgcm models, giss_er) performed well in some

indicators (e.g., average annual precipitation) and not in

others (e.g., 20th-century trend in temperature). For

example, giss_er performed well in all categories except

the North Pacific index, for which it ranks lowest of all

PLATE 1. The wolverine (Gulo gulo), which is one of the largest terrestrial members of the weasel family, persists at extremely
low population densities across alpine habitats of the Northern Hemisphere. The wolverine’s obligate association with persistent
snow cover for successful reproduction denning leaves the species vulnerable to decreasing habitat and population connectivity due
to global warming. Photo credit: Dale Pedersen.

KEVIN S. MCKELVEY ET AL.2886 Ecological Applications
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models (Mote and Salathé 2010). For each model,

regional rankings are relatively consistent among the

three river basins (see Littell et al. [2010] for details).

Based on the ensemble projections, increases in

average annual temperature for 2030–2059 are predicted

for all three river basins:þ2.18C for the Columbia Basin

(pcm1, þ1.88C; and miroc 3.2, þ2.78C), þ2.38C for the

Upper Missouri Basin (pcm1, þ1.78C; and miroc 3.2,

þ3.18C), and þ2.48C for the Upper Colorado Basin

(pcm1, þ1.78C; and miroc 3.2, þ3.38C), with 0%, 3%,

and 2% increases in annual precipitation, respectively.

For 2070–2099, predicted increases are þ3.88C for the

Columbia Basin (pcm1,þ2.78C; and miroc 3.2,þ4.68C),

þ4.18C for the Upper Missouri Basin (pcm1, þ2.68C;

and miroc 3.2, þ5.38C), and þ4.38C for the Upper

Colorado Basin (pcm1,þ2.68C; and miroc 3.2,þ5.78C),

with 2%, 7%, and 5% increases in annual precipitation,

respectively. The variation in precipitation among

GCMs in the ensemble is large and differs among

regions and seasons, but predictions for the ensemble

mean winter (December/January/February) precipita-

tion increase in all three basins (4–8% for 2030–2059; 9–

13% for 2070–2099). However, in the spring (March/

April/May), precipitation increases in the Columbia (4%
for 2030–2059; 7% for 2070–2099) and Upper Missouri

(5% in 2030–2059; 11% for 2070–2099) Basins, but

decreases in the Upper Colorado Basin (�4% for 2030–

2059; �7% for 2070–2099).

Cross-walk between MODIS and the ensemble

climate model

The best fit between snow depth based on the

Historical Reconstruction and the MODIS-based snow

cover layer through 15 May (hereafter, 15 May MODIS)

occurred when 1/16-degree pixels with average snow

depth values .13 cm were considered snow covered and

those with ,13 cm were not. Rescaling the 1/16-degree

map to 0.5-km pixels to match the MODIS data resulted

in the correct classification of 93.7% of pixels (Table 1).

Spatial patterns were also similar (Fig. 2). Because

fitting was done by maximizing the ratio of correctly

classified snow pixels to misclassifications, more snow

cover was generated in the Historical Reconstruction

than in 15 May MODIS (Table 2). Most of the

additional areas classified as snow covered in the

Historical Reconstruction were in the Columbia River

Basin (Table 2, Fig. 2A). Some areas, such as the

northern Cascade Range in Washington and British

Columbia, had more snow area in the Historical

Reconstruction. Overall, the Upper Missouri and Upper

Colorado River Basins contained slightly less snow-

covered area in the Historical Reconstruction than in 15

May MODIS.

Future predictions based on ensemble means

Spring snow cover projections based on the ensemble

mean climate for 2030–2059 (hereafter, Ensemble 2045)

retained 66.8% of spring snow cover depicted in the

Historical Reconstruction (Table 2). Predicted losses in

TABLE 1. Confusion matrix for cross-walk between persistent
spring snow cover based on 0.5-km Moderate Resolution
Imaging Spectroradiometer (MODIS) data (Copeland et al.
2010) and historical 1 May snow depth based on 1/16-degree
(latitude/longitude) resolution variable infiltration capacity
(VIC) hydrologic modeling (Historical Reconstruction).

MODIS

Snow No snow

Historical Reconstruction

Snow 1 160 771 503 389
No snow 222 488 9 655 150

Note: The 1/16-degree pixels were rescaled to match the 0.5-
km MODIS data, and numbers in the cells indicate the number
of 0.530.5 km areas where the projections agreed or disagreed.

FIG. 2. Comparison between the (A) 1/16-degree Historical Reconstruction of snow cover and (B) Moderate Resolution
Imaging Spectroradiometer (MODIS)-based snow cover through 15 May (Copeland et al. 2010). The study area is shown in gray,
and snow cover is black. Historical Reconstruction refers to the optimal fit between snow depth and MODIS snow cover. In the
Historical Reconstruction, we classified 1/16-degree pixels as wolverine habitat if snow depth exceeded 13 cm.
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FIG. 3. Ensemble model projections for the period 2030–2059 (Ensemble 2045). Ensemble 2045 refers to snow cover projections
based on downscaled ensemble global climate models (GCM) and hydrologic modeling for the period 2030–2059. The study area is
shown in gray, and snow cover is black.

TABLE 2. Areal extent of persistent spring snow cover in river basins, states, and provinces analyzed using MODIS and three
downscaled climate projections (Ensemble, miroc 3.2, and pcm1).

Location

Snow cover, by model type (km2)

15 May
MODIS

29 May
MODIS

Historical
Reconstruction

Ensemble
2045

Ensemble
2085

miroc 3.2,
2070–2099

pcm1,
2070–2099

River basin

Columbia 92 332 40 285 127 302 83 237 43 211 17 311 50 672
Upper Missouri 42 601 16 996 40 484 30 814 19 837 7566 26 660
Upper Colorado 32 334 8681 30 029 18 240 10 364 2285 12 619
Total 167 268 65 962 197 815 132 290 73 411 27 163 89 952

State/province

British Columbia 60 176 43 081 76 263 67 382 57 831 48 725 59 026
Washington 21 883 12 214 33 891 24 594 14 744 10 326 16 933
Oregon 10 122 2660 12 716 6281 2589 1417 3949
Idaho 35 206 12 919 44 769 25 724 9977 1433 13 928
Montana 35 727 16 490 45 914 33 506 20 163 6937 23 431
Wyoming 31 588 14 005 31 264 23 556 14 437 3995 17 570
Nevada 1000 27 288 72 0 0 0
Utah 9588 2476 5820 2956 1438 0 1586
Colorado 27 702 6681 27 409 18 525 11 756 3203 14 506
New Mexico 261 1 281 40 0 0 40
Total� 173 077 67 472 202 353 135 253 75 104 27 310 91 941

Notes: Ensemble 2045 and Ensemble 2085 refer to snow cover projections based on downscaled ensemble global climate
modeling (GCM) for the periods 2030–2059 and 2070–2099, respectively. Models pcm1 and miroc 3.2 refer to snow cover
projections for the period 2070–2099 based on downscaling of the National Center for Atmospheric Research (NCAR)’s Parallel
Climate Model and the medium resolution Model for Interdisciplinary Research on Climate collectively created by the Center for
Climate System Research (University of Tokyo), National Institute for Environmental Studies, and Frontier Research Center for
Global Change, Japan (see Littell et al. [2011] for details).

� Totals for the state/province analysis vary slightly from those for the basins because the basin polygons clip the edges of pixels
that are not clipped by state boundaries; therefore, the state/province totals always are slightly larger than those for the basins.
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snow-covered areas were greatest at the southern

periphery of our study area; i.e., New Mexico, Nevada,

and Oregon will lose most (50.6–85.9%) of their spring

snow cover, whereas Idaho is predicted to lose only

42.5% of its current snow cover. Losses were smallest in

those areas currently characterized by extensive areas of

spring snow cover: British Columbia, the northern

Cascade Range in Washington, Glacier National Park

and Bob Marshall Wilderness in western Montana, and

the Greater Yellowstone Area in Montana, Idaho, and

Wyoming (Figs. 1 and 3).

Spring snow cover projections based on ensemble

mean climate for 2070–2099 (hereafter, Ensemble 2085)

show continued declines in spring snow cover across the

study area, with only 37.1% of spring snow cover

remaining overall (Table 2). Only British Columbia

retains most of its spring snow cover (75.8%). The states

of Washington, Montana, Wyoming, and Colorado all

retain .40% of their snow cover. Oregon, Idaho, and

Utah lose 75.3–79.6% of their spring snow cover. Snow

cover is eliminated in those portions of Nevada and New

Mexico that are included in the Columbia and Upper

Colorado River Basins (Table 2, Fig. 4A).

29 May MODIS

MODIS-based persistent snow cover through 29 May

(hereafter, 29 May MODIS) retained 39.0% of snow-

covered areas compared to 15 May MODIS (Table 2).

By 29 May, large declines in snow cover are predicted in

central Idaho, but snow cover is largely retained in

British Columbia. Both the Glacier National Park/Bob

Marshall Wilderness and the Greater Yellowstone Area

maintain spring snow cover, but become more frag-

mented (Figs. 1 and 4D).

FIG. 4. Comparisons among three model projections, (A) Ensemble, (B) pcm1, and (C) miroc 3.2 for the period 2070–2099, and
(D) MODIS-based snow cover through 29 May. Ensemble 2045 and Ensemble 2085 refer to snow cover projections based on
downscaled ensemble GCM and hydrologic modeling for the periods 2030–2059 and 2070–2099, respectively. Models pcm1 and
miroc 3.2 refer to snow cover projections for the period 2070–2099 based on downscaling of the National Center for Atmospheric
Research’s Parallel Climate Model and the medium resolution Model for Interdisciplinary Research on Climate collectively created
by the Center for Climate System Research (University of Tokyo), National Institute for Environmental Studies, and Frontier
Research Center for Global Change, Japan (see Littell et al. [2011] for details). The study area is shown in gray, and snow cover is
black.
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Comparisons between GCM projections for 2070–2099
and 29 May MODIS

Of the three alternative GCM projections (ensemble,

miroc 3.2, and pcm1), spring snow cover in 29 May

MODIS is most similar to Ensemble 2085 projections
(Table 2, compare Fig. 4A with Fig. 4D). As expected,

by 2070–2099, pcm1 has the most spring snow cover and

miroc 3.2 has the least. Of the three alternative

projections, Ensemble 2085 is most divergent from

miroc 3.2 (compare Fig. 4A with Fig. 4C). In terms of

spatial patterns, Ensemble 2085 is most consistent with

pcm1, but in most areas, pcm1 results in slightly more

snow cover (Fig. 5, Table 2). Models are most

convergent in British Columbia (Fig. 6), where most

FIG. 5. Comparisons of the areal extent of persistent spring snow cover among three downscaled climate models (pcm1,
Ensemble, miroc 3.2) and MODIS data extending the snow-cover period through 29 May. All model projections are for the period
2070–2099.

FIG. 6. Comparison of spring snow distributions between the ensemble-averaged GCM projection (Ensemble 2085), the cool
(pcm1), and warm (miroc 3.2) projections, and MODIS snow cover extended through 29 May. All model projections are for the
period 2070–2099.

KEVIN S. MCKELVEY ET AL.2890 Ecological Applications
Vol. 21 No. 8



spring snow cover is retained in all projections (Table 2),

and most divergent in Idaho, which is the only area

where 29 May MODIS shows more snow-covered areas

than Ensemble 2085 (Fig. 6).

Modeling the future connectivity of wolverine populations

Ensemble projections.—Each point where a wolverine

could originate requires a contiguous snow area larger

than 15 3 15 km (225 km2), which is the approximate

home range size for female wolverines (Schwartz et al.

2009). Thus, the number of potential pairwise paths

drops quadratically as snow-covered areas .225 km2 in

size are lost. The number of potential start locations

decreases from 558 in the Historical Reconstruction to

194 in Ensemble 2085 and this decrease, in turn, leads to

an order-of-magnitude reduction in the number of

pairwise least-cost paths (Fig. 7). Due to the loss of

spring snow cover in Idaho (Table 2) predicted by

Ensemble 2085, the most important corridors connect-

ing Glacier National Park and the Bob Marshall

FIG. 7. Source and destination ‘‘grid nodes’’ for each period of analysis: the (A) Historical Reconstruction, and ensemble
projections for (B) the periods 2030–2059 (Ensemble 2045) and (C) for 2070–2099 (Ensemble 2085). We located snow points by
placing points at 15-km intervals and keeping only those points that overlapped with a snowpack patch at least 225 km2 in size (see
Schwarz et al. [2009] for details). ‘‘Paths’’ refer to the total number of pairwise least-cost paths possible given the number of nodes.

FIG. 8. Cumulative cost paths for all pairs of snow points for the (A) Historical Reconstruction, and ensemble projections for
(B) the periods 2030–2059 (Ensemble 2045) and (C) 2070–2099 (Ensemble 2085). Coloring has been scaled to the total number of
pairwise least-cost paths that cross each pixel (see Schwartz et al. [2009] for details), which declines over time due to decreased
habitat.
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Wilderness to the Greater Yellowstone Area shift

eastward, favoring more direct north–south connections

(compare Fig. 8A with Fig. 8C). With the decline in

snow-covered area, average movement cost between

locations increases (Fig. 9). Movement cost values at or

higher than those associated with currently observed

genetic isolation (Schwartz et al. 2009) occur between all

locations based on Ensemble 2085 predictions (Figs. 9

and 10).

29 May MODIS.—Because 29 May MODIS is based

on the same data source and therefore is at the same

resolution as the analyses conducted by Schwartz et al.

(2009), connectivity maps generated by Schwartz et al.

(2009) can be directly compared with those in 29 May

MODIS (Fig. 11). Comparing spring snow cover in 29

May MODIS with that in 15 May MODIS, western

pathways become less important and direct north–south

connections more so, but the shift is not as dramatic as

in connectivity maps for Ensemble 2085 (compare Figs.

8 and 11). Increases in average movement cost when

comparing 29 May MODIS least-cost paths with those

in 15 May MODIS (Fig. 12; Schwartz et al. 2009)

suggest changes in connectivity similar to those predict-

ed in Ensemble 2085 (compare Figs. 9 and 12), in which

average movement costs associated with genetic isola-

tion become widespread.

DISCUSSION

The ensemble of 10 GCMs selected for our analyses

produced mean annual and seasonal projections that

FIG. 9. Frequency distribution depicting the average path cost from each snow point to all other snow points for the (A)
Historical Reconstruction, and ensemble projections for (B) the period 2030–2059 (Ensemble 2045) and (C) for 2070–2099
(Ensemble 2085). The average path cost units are arbitrary and are computed as the sum costs associated with all pairwise least-cost
paths between a given node and all other nodes divided by the total number of paths.

FIG. 10. Maps depicting whether snow points in the northern Rocky Mountains were genetically isolated (black circles) or not
(gray circles), based on least-cost connectivity pathways and thresholds of isolation developed by Schwartz et al. (2009). (A)
Current patterns of genetic isolation (Schwartz et al. 2009) are compared with predicted patterns of isolation for (B) the periods
2030–2059 (Ensemble 2045) and (C) for 2070–2099 (Ensemble 2085).
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generally agree with the ensemble of 20 GCMs using the

A1B emission scenario analyzed by Mote and Salathé

(2010) for the Pacific Northwest. However, there are

regional differences in the projections: Slightly more

warming is predicted in the Upper Colorado River Basin

than in the Upper Missouri Basin, which in turn, is

slightly greater than in the Columbia Basin. The Pacific

Northwest is characterized by large amounts of winter

precipitation at temperatures near freezing. Thus,

modest increases in temperature cause precipitation to

fall as rain rather than snow, making its snowpack

highly vulnerable to climatic warming (e.g., Elsner et al.

2010, Mantua et al. 2010). However, perhaps because

historical snowpack is so deep and extensive in the

Pacific Northwest, estimated May snow cover in that

region is not as highly impacted by climate change as are

interior areas, such as Idaho (Table 2).

Given a warming trend, spring snow cover is expected

to decline and snow-covered areas are expected to

become more fragmented and isolated. However, the

ensemble model was more consistent with pcm1 (the

cool extreme of the applied models) than with miroc 3.2

(the warmest model). For this reason, most snow cover

(66.9%) is retained in Ensemble 2045. Additionally,

FIG. 11. Wolverine connectivity pathways based on (A) persistent snow cover through 15 May and (B) persistent snow cover
through 29 May. Panel (A) is similar to Fig. 4 in Schwartz et al. (2009) and shows putative wolverine paths based on conformity
with observed patterns of genetic structure. Panel (B) uses the same model to predict wolverine paths with an additional two weeks
of snowmelt. Coloring has been scaled to the total number of pairwise least-cost paths that cross each pixel (see Schwartz et al.
[2009] for details), which declines over time due to decreased habitat.

FIG. 12. Frequency distributions depicting the average path cost from each snow point to all other snow points comparing
least-cost pathways based on (A) 15 May MODIS and (B) 29 May MODIS snow cover. Note that the y-axes are scaled differently
for each date; see Fig. 9 for clarification of average path cost.
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states in the contiguous United States where wolverines

currently occur (Washington, Idaho, Montana, and

Wyoming) retain 75.3% of their spring snow cover based

on Ensemble 2045. For Ensemble 2045, Montana and

Idaho maintain some connected areas in the mid-21st

century (Fig. 10), but many of the potential movement

paths have much higher costs. Higher costs, coupled

with decreased denning habitat, will likely lead to fewer

successful wolverine dispersals. Therefore, as wolverine

habitat shrinks during the 21st century, large contiguous

areas of habitat where local extirpation is less likely to

occur will become increasingly important for the

conservation of wolverines in the western United States.

Continued warming trends may create many small

and isolated populations that would be subject to high

levels of demographic and genetic stochasticity. Wol-

verine populations are at risk from isolation (Krebs et

al. 2004); their extirpation in Colorado and California

likely resulted from a combination of high human-

caused mortality and very low immigration rates (Aubry

et al. 2007, Schwartz et al. 2007). Currently, many of the

areas containing wolverines in the western United States

support relatively small populations. For example,

Squires et al. (2007) estimated that four mountain

ranges in southwestern Montana collectively contained

about 13 wolverines (12.8, 95% CI¼ 9.9–15.7). Clearly,

such population densities are too low for long-term

persistence without connectivity to other populations.

Schwartz et al.’s (2009) analysis assumed a well-

distributed population of wolverines with all larger

areas of habitat occupied. This is consistent with current

understandings (see Aubry et al. 2007), but may not be

in the future if decreased connectivity results in the loss

of wolverine populations in many of the smaller

mountain ranges. Meta-population theory predicts that

decreased connectivity will shift the balance between

colonization and extinction, leading to decreased patch

occupancy (Levins 1969, 1970). Additionally, the

predicted responses of meta-populations to reductions

in occupied area are nonlinear and characterized by

extinction thresholds (e.g., Lande 1987). Therefore, like

the statistical downscaling of GCMs, the changes in

connectivity predicted in our analyses should be

considered conservative (see section on Limitations and

caveats below); if most of the wolverine habitat was

unoccupied, average movement costs would be much

higher than indicated.

Although areas of wolverine habitat will likely be

greatly reduced and isolated by the late 21st century,

relatively large islands of spring snow cover are

predicted to persist. Contiguous areas of snow cover

.1000 km2 in size, which are large enough to support

small breeding populations of wolverines and presum-

ably large enough for short-term population persistence,

are retained in both the Ensemble 2085 and 29 May

MODIS projections. In particular, British Columbia

contains extensive areas of spring snow cover that are

connected to snow-covered areas in northwestern

Montana. Additionally, large snow-covered areas exist

in northern Washington, along the Montana–Idaho

border, and in the Greater Yellowstone Area (Fig. 13).

Colorado appears to provide habitat for wolverines in

the late 21st century based on Ensemble 2085, but not in

29 May MODIS (Fig. 13).

Qualitatively, Ensemble 2085 and 29 May MODIS are

similar because topographic patterns strongly constrain

both projections. Both projections identify most of the

same large areas of retained snow cover, which may

provide potential refuges for wolverines: British Colum-

bia, northern Washington, northwestern Montana, and

the Greater Yellowstone Area (compare Fig. 4A with

Fig. 4D). Ensemble 2085, however, predicts significantly

more snow in Colorado than would be expected if the

only process we modeled was accelerated spring snow

FIG. 13. Contiguous areas of persistent spring snow cover .1000 km2 based on (A) MODIS snow cover shifted two weeks later
in the year (29 May MODIS) and (B) the ensemble climate projection for the period 2070–2099 (Ensemble 2085). The study area is
shown in gray, and snow cover is black.
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melt. Colorado has virtually identical snow-covered

areas in both the Historical Reconstruction and 15 May

MODIS (Table 2). Although there is 10.2% less snow

overall in 29 May MODIS compared to Ensemble 2085,

there is 176% more snow-covered area in Colorado. This

divergence does not indicate differences related to scale

(see section on Limitations and caveats below). Rather, it

is likely due to altered patterns of combined seasonal

temperature and precipitation projected by the climate

models; climate models are predicting more winter snow

in this area by the end of the 21st century. Conversely,

the large degree of uncertainty associated with future

snow conditions in Idaho (Fig. 6) may be due, at least in

part, to the interaction between snow cover and spatial

scale. In Idaho, spring snow cover is highly fragmented

and follows narrow ridges in many areas (Fig. 2B).

However, even in Idaho, where projections are most

divergent, the overall results from comparing 29 May

MODIS with Ensemble 2085 are similar: Idaho loses

proportionately more of its snow cover than either

Montana or Wyoming (Table 2). Additionally, even

though connectivity modeling is sensitive to fine-grained

changes in snow cover, the qualitative shifts in

connectivity associated with losing Idaho as a popula-

tion source are also very similar in both the Ensemble

2085 and MODIS 29 May projections (compare Figs.

8C and 11B).

Limitations and caveats

Throughout our analyses, we made many assump-

tions about constancy. We have assumed, for example,

that observed relationships between the habitat use and

movement patterns of wolverines and areas with

persistent spring snow cover will remain constant if

climatic conditions change. In downscaling climate

models, we have assumed that small-scale climatic

relationships will also remain constant. Any attempt to

project climate patterns into the future will, by necessity,

involve these kinds of assumptions. Thus, it is important

to understand that the validity of our analyses will

ultimately depend on the validity of such assumptions.

The downscaling approach used here assumes that

relationships between local and regional climate will

remain constant in the future. This assumption can lead

to underestimations of local climate change. For

example, using a regional climate model, Salathé et al.

(2010) show that some montane areas in the PNW may

warm faster than expected based on statistical down-

scaling due to decreased albedo associated with snow

loss. These types of process-based feedbacks are not

captured through statistical downscaling. However,

Salathé et al. (2010) found that differences in regional

projections were still dominated by the GCMs used to

set boundary conditions, rather than by the scale of

regional models used.

Additional areas of uncertainty are associated with
possible changes in the nature of storm tracks, which
may affect the future accumulation and distribution of

snowpack (Salathé 2006), and therefore, the degree to
which GCMs and their ensemble averages capture
potential change. For these reasons, the use of ensemble

means and the delta method for downscaling likely
underestimate local climate changes that would impact
wolverine habitat; changes in spring snow cover
predicted by our analyses should be considered conser-
vative.

Although wolverine distribution is closely tied to

persistent spring snow cover (Copeland et al. 2010), we

do not know how fine-scale changes in snow patterns

within wolverine home ranges may affect population

persistence. Wolverines den in the snow column itself or

under snow-covered logs and boulders (Magoun and

Copeland 1998, Landa et al. 1998); thus, we assume that

decreasing spring snow cover within wolverine home

ranges will reduce the availability of reproductive den

sites. However, there are a variety of local factors that

determine both where wolverines den and the quality of

den sites. For example, reproductive dens are often

associated with avalanche chutes (Lofroth and Krebs

2007), and wolverines of both sexes are associated with

these features throughout the year (Krebs et al. 2007).

Avalanche chutes provide both subnivean debris piles

for denning (Lofroth and Krebs 2007) and food sources,

including ungulate carrion in the winter and rodents in

the summer (Krebs et al. 2007). Consequently, as the

amount and timing of snowfall changes, associated

changes in avalanche frequency and other small-scale

phenomena could have significant effects on wolverine

habitat quality.

Cross-walking the historical temperature and precip-

itation data to MODIS-based snow cover has a number

of limitations. The first is that modeled snow depth (or

SWE) is not an exact surrogate for persistent spring

snow cover. However, these two metrics are highly

correlated because the areas where snow cover persists

into the spring are often those that support the deep

snowpacks needed for wolverine denning. Arguably,

snow depth may have a greater influence on wolverine

denning than spring snow cover; Copeland et al. (2010)

used snow cover because of the ability to obtain these

data with precise spatial and temporal resolution. Thus,

the MODIS snow cover is a proxy for the biological

needs of the wolverine, but appears to be a very good

one. Cross-walking to VIC-derived snow depth at much

coarser resolution weakens this proxy association. In the

modeled snow distributions, pixels are about 1403 larger

than they are in the 0.5-km MODIS coverage. Given the

complex topographic patterns in the western mountains

of the contiguous United States, there are few areas

where all 140 MODIS-scale pixels contained in a 1/16-

degree area will be persistently snow covered in mid-

May. Similarly, the average snow depth modeled across

a 1/16-degree pixel will, in most cases, be an average

between areas with deep persistent snow cover and areas

that are generally bare. When statistically fitting the

MODIS snow coverage to VIC-derived snow depth, the
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size and shape of snow-covered areas will therefore

influence the local quality of the fit. Generally, in areas

where snow is extensive and contiguous, the best fit

will consistently lead to an increase in snow area with

increased pixel size; most areas will be snow-covered and

small, bare areas will be eliminated. Conversely, in areas

where snow is highly fragmented or limited to linear

areas along ridgelines, the best fit will produce larger

pixels that are consistently classified as snow free. The

excess (when compared to MODIS) snow cover in the

Historical Reconstruction in areas such as northern

Washington and British Columbia, and the lack of snow

in areas such as Idaho, is at least partially due to these

scaling issues and is unavoidable. Also, the time periods

for the MODIS data and Historical Reconstruction are

different. Data for the Historical Reconstruction were

compiled for most of the 20th century, whereas MODIS

data were limited to the first seven years of the 21st

century (2000–2006).

Lastly, these analyses are constrained by the geo-

graphic extent of the river basins analyzed. States such

as Oregon, which contain areas exterior to the three

analyzed basins, likely contain more wolverine habitat,

both currently and in the future, than is indicated in the

figures and Table 2. Thus, there are probably areas in

the contiguous United States that could provide future

wolverine habitat, but are beyond the geographic scope

of our analyses. Importantly, the potential contribution

of the southern Sierra Nevada in California, which

provided wolverine habitat historically (Aubry et al.

2007) and currently contains extensive areas of persis-

tent spring snow cover (Copeland et al. 2010) was not

considered here.

CONCLUSIONS

We expect that the geographic extent and connectivity

of suitable wolverine habitat in western North America

will decline with continued global warming. Under some

scenarios, such as miroc 3.2, western North America

heats up rapidly and snowpack is quickly eroded.

However, the ensemble model does not behave like

miroc 3.2; rather, it is much more similar to pcm1. If

these scenarios are valid, then conservation efforts

should focus on maintaining wolverine populations in

the largest remaining areas of contiguous habitat and, to

the extent possible, facilitating connectivity among

habitat patches.
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