73 research outputs found

    When do coinfections matter?

    Get PDF
    PURPOSE OF REVIEW: Advances in diagnostic methods mean that coinfections are increasingly being detected in clinical practice, yet their significance is not always obvious. In parallel, basic science studies are increasingly investigating interactions between pathogens to try to explain real-life observations and elucidate biological mechanisms. RECENT FINDINGS: Coinfections may be insignificant, detrimental, or even beneficial, and these outcomes can occur through multiple levels of interactions which include modulation of the host response, altering the performance of diagnostic tests, and drug-drug interactions during treatment. The harmful effects of chronic coinfections such as tuberculosis or Hepatitis B and C in association with HIV are well established, and recent studies have focussed on strategies to mitigate these effects. However, consequences of many acute coinfections are much less certain, and recent conflicting findings simply highlight many of the challenges of studying naturally acquired infections in humans. SUMMARY: Tackling these challenges, using animal models, or careful prospective studies in humans may prove to be worthwhile. There are already tantalizing examples where identification and treatment of relevant coinfections seems to hold promise for improved health outcomes.This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0

    Impairment of neutrophil oxidative burst in children with sickle cell disease is associated with heme oxygenase-1.

    Get PDF
    Sickle cell disease is a risk factor for invasive bacterial infections, and splenic dysfunction is believed to be the main underlying cause. We have previously shown that the liberation of heme in acute hemolysis can induce heme oxygenase-1 during granulopoiesis, impairing the ability of developing neutrophils to mount a bactericidal oxidative burst, and increasing susceptibility to bacterial infection. We hypothesized that this may also occur with the chronic hemolysis of sickle cell disease, potentially contributing to susceptibility to infections. We found that neutrophil oxidative burst activity was significantly lower in treatment-naĂŻve children with sickle cell disease compared to age-, gender- and ethnicity-matched controls, whilst degranulation was similar. The defect in neutrophil oxidative burst was quantitatively related to both systemic heme oxygenase-1 activity (assessed by carboxyhemoglobin concentration) and neutrophil mobilization. A distinct population of heme oxygenase-1-expressing cells was present in the bone marrow of children with sickle cell disease, but not in healthy children, with a surface marker profile consistent with neutrophil progenitors (CD49d(Hi) CD24(Lo) CD15(Int) CD16(Int) CD11b(+/-)). Incubation of promyelocytic HL-60 cells with the heme oxygenase-1 substrate and inducer, hemin, demonstrated that heme oxygenase-1 induction during neutrophilic differentiation could reduce oxidative burst capacity. These findings indicate that impairment of neutrophil oxidative burst activity in sickle cell disease is associated with hemolysis and heme oxygenase-1 expression. Neutrophil dysfunction might contribute to risk of infection in sickle cell disease, and measurement of neutrophil oxidative burst might be used to identify patients at greatest risk of infection, who might benefit from enhanced prophylaxis

    HMOX1 STR polymorphism and malaria: an analysis of a large clinical dataset

    Get PDF
    Background: Inducible expression of heme oxygenase-1 (encoded by the gene HMOX1) may determine protection from heme released during malaria infections. A variable length, short tandem GT(n) repeat (STR) in HMOX1 that may influence gene expression has been associated with outcomes of human malaria in some studies. In this study, an analysis of the association between variation at the STR in HMOX1 on severe malaria and severe malaria subtypes is presented in a large, prospectively collected dataset (MalariaGEN). Methods: The HMOX1 STR was imputed using a recently developed reference haplotype panel designed for STRs. The STR was classified by total length and split into three alleles based on an observed trimodal distribution of repeat lengths. Logistic regression was used to assess the association between this repeat on cases of severe malaria and severe malaria subtypes (cerebral malaria and severe malarial anaemia). Individual analyses were performed for each MalariaGEN collection site and combined for meta-analysis. One site (Kenya), had detailed clinical metadata, allowing the assessment of the effect of the STR on clinical variables (e.g. parasite count, platelet count) and regression analyses were performed to investigate whether the STR interacted with any clinical variables. Results: Data from 17,960 participants across 11 collection sites were analysed. In logistic regression, there was no strong evidence of association between STR length and severe malaria (Odds Ratio, OR: 0.96, 95% confidence intervals 0.91–1.02 per ten GT(n) repeats), although there did appear to be an association at some sites (e.g., Kenya, OR 0.90, 95% CI 0.82–0.99). There was no evidence of an interaction with any clinical variables. Conclusions: Meta-analysis suggested that increasing HMOX1 STR length is unlikely to be reliably associated with severe malaria. It cannot be ruled out that repeat length may alter risk in specific populations, although whether this is due to chance variation, or true variation due to underlying biology (e.g., gene vs environment interaction) remains unanswered

    ‘Bouncing back’ from subclinical malaria:Inflammation and erythrocytosis after resolution of P. falciparum infection in Gambian children

    Get PDF
    Recent malaria is associated with an increased risk of systemic bacterial infection. The aetiology of this association is unclear but malaria-related haemolysis may be one contributory factor. To characterise the physiological consequences of persistent and recently resolved malaria infections and associated haemolysis, 1650 healthy Gambian children aged 8–15 years were screened for P. falciparum infection (by 18sRNA PCR) and/or anaemia (by haematocrit) at the end of the annual malaria transmission season (t1). P. falciparum-infected children and children with moderate or severe anaemia (haemoglobin concentration < 11g/dl) were age matched to healthy, uninfected, non-anaemic controls and screened again 2 months later (t2). Persistently infected children (PCR positive at t1 and t2) had stable parasite burdens and did not differ significantly haematologically or in terms of proinflammatory markers from healthy, uninfected children. However, among persistently infected children, IL-10 concentrations were positively correlated with parasite density suggesting a tolerogenic response to persistent infection. By contrast, children who naturally resolved their infections (positive at t1 and negative at t2) exhibited mild erythrocytosis and concentrations of pro-inflammatory markers were raised compared to other groups of children. These findings shed light on a ‘resetting’ and potential overshoot of the homeostatic haematological response following resolution of malaria infection. Interestingly, the majority of parameters tested were highly heterogeneous in uninfected children, suggesting that some may be harbouring cryptic malaria or other infections

    Modelling upper respiratory viral load dynamics of SARS-CoV-2.

    Get PDF
    Relationships between viral load, severity of illness, and transmissibility of virus are fundamental to understanding pathogenesis and devising better therapeutic and prevention strategies for COVID-19. Here we present within-host modelling of viral load dynamics observed in the upper respiratory tract (URT), drawing upon 2172 serial measurements from 605 subjects, collected from 17 different studies. We developed a mechanistic model to describe viral load dynamics and host response and contrast this with simpler mixed-effects regression analysis of peak viral load and its subsequent decline. We observed wide variation in URT viral load between individuals, over 5 orders of magnitude, at any given point in time since symptom onset. This variation was not explained by age, sex, or severity of illness, and these variables were not associated with the modelled early or late phases of immune-mediated control of viral load. We explored the application of the mechanistic model to identify measured immune responses associated with the control of the viral load. Neutralising antibodies correlated strongly with modelled immune-mediated control of viral load amongst subjects who produced neutralising antibodies. Our models can be used to identify host and viral factors which control URT viral load dynamics, informing future treatment and transmission blocking interventions

    Complement Factor H Levels Associate With Plasmodium falciparum Malaria Susceptibility and Severity.

    Get PDF
    BACKGROUND: Plasmodium falciparum may evade complement-mediated host defense by hijacking complement Factor H (FH), a negative regulator of the alternative complement pathway. Plasma levels of FH vary between individuals and may therefore influence malaria susceptibility and severity. METHODS: We measured convalescent FH plasma levels in 149 Gambian children who had recovered from uncomplicated or severe P. falciparum malaria and in 173 healthy control children. We compared FH plasma levels between children with malaria and healthy controls, and between children with severe (n = 82) and uncomplicated malaria (n = 67). We determined associations between FH plasma levels and laboratory features of severity and used multivariate analyses to examine associations with FH when accounting for other determinants of severity. RESULTS: FH plasma levels differed significantly between controls, uncomplicated malaria cases, and severe malaria cases (mean [95% confidence interval], 257 [250 to 264], 288 [268 to 309], and 328 [313 to 344] ”g/mL, respectively; analysis of variance P < .0001). FH plasma levels correlated with severity biomarkers, including lactate, parasitemia, and parasite density, but did not correlate with levels of PfHRP2, which represent the total body parasite load. Associations with severity and lactate remained significant when adjusting for age and parasite load. CONCLUSIONS: Natural variation in FH plasma levels is associated with malaria susceptibility and severity. A prospective study will be needed to strengthen evidence for causation, but our findings suggest that interfering with FH binding by P. falciparum might be useful for malaria prevention or treatment

    Plasmodium Infection Is Associated with Impaired Hepatic Dimethylarginine Dimethylaminohydrolase Activity and Disruption of Nitric Oxide Synthase Inhibitor/Substrate Homeostasis.

    Get PDF
    Inhibition of nitric oxide (NO) signaling may contribute to pathological activation of the vascular endothelium during severe malaria infection. Dimethylarginine dimethylaminohydrolase (DDAH) regulates endothelial NO synthesis by maintaining homeostasis between asymmetric dimethylarginine (ADMA), an endogenous NO synthase (NOS) inhibitor, and arginine, the NOS substrate. We carried out a community-based case-control study of Gambian children to determine whether ADMA and arginine homeostasis is disrupted during severe or uncomplicated malaria infections. Circulating plasma levels of ADMA and arginine were determined at initial presentation and 28 days later. Plasma ADMA/arginine ratios were elevated in children with acute severe malaria compared to 28-day follow-up values and compared to children with uncomplicated malaria or healthy children (p<0.0001 for each comparison). To test the hypothesis that DDAH1 is inactivated during Plasmodium infection, we examined DDAH1 in a mouse model of severe malaria. Plasmodium berghei ANKA infection inactivated hepatic DDAH1 via a post-transcriptional mechanism as evidenced by stable mRNA transcript number, decreased DDAH1 protein concentration, decreased enzyme activity, elevated tissue ADMA, elevated ADMA/arginine ratio in plasma, and decreased whole blood nitrite concentration. Loss of hepatic DDAH1 activity and disruption of ADMA/arginine homeostasis may contribute to severe malaria pathogenesis by inhibiting NO synthesi

    Plasmodium Infection Is Associated with Impaired Hepatic Dimethylarginine Dimethylaminohydrolase Activity and Disruption of Nitric Oxide Synthase Inhibitor/Substrate Homeostasis.

    Get PDF
    Inhibition of nitric oxide (NO) signaling may contribute to pathological activation of the vascular endothelium during severe malaria infection. Dimethylarginine dimethylaminohydrolase (DDAH) regulates endothelial NO synthesis by maintaining homeostasis between asymmetric dimethylarginine (ADMA), an endogenous NO synthase (NOS) inhibitor, and arginine, the NOS substrate. We carried out a community-based case-control study of Gambian children to determine whether ADMA and arginine homeostasis is disrupted during severe or uncomplicated malaria infections. Circulating plasma levels of ADMA and arginine were determined at initial presentation and 28 days later. Plasma ADMA/arginine ratios were elevated in children with acute severe malaria compared to 28-day follow-up values and compared to children with uncomplicated malaria or healthy children (p<0.0001 for each comparison). To test the hypothesis that DDAH1 is inactivated during Plasmodium infection, we examined DDAH1 in a mouse model of severe malaria. Plasmodium berghei ANKA infection inactivated hepatic DDAH1 via a post-transcriptional mechanism as evidenced by stable mRNA transcript number, decreased DDAH1 protein concentration, decreased enzyme activity, elevated tissue ADMA, elevated ADMA/arginine ratio in plasma, and decreased whole blood nitrite concentration. Loss of hepatic DDAH1 activity and disruption of ADMA/arginine homeostasis may contribute to severe malaria pathogenesis by inhibiting NO synthesis

    Raising AWaRe-ness of Antimicrobial Stewardship Challenges in Pediatric Emergency Care: Results from the PERFORM Study Assessing Consistency and Appropriateness of Antibiotic Prescribing Across Europe

    Full text link
    Background Optimization of antimicrobial stewardship is key to tackling antimicrobial resistance, which is exacerbated by overprescription of antibiotics in pediatric emergency departments (EDs). We described patterns of empiric antibiotic use in European EDs and characterized appropriateness and consistency of prescribing. Methods Between August 2016 and December 2019, febrile children attending EDs in 9 European countries with suspected infection were recruited into the PERFORM (Personalised Risk Assessment in Febrile Illness to Optimise Real-Life Management) study. Empiric systemic antibiotic use was determined in view of assigned final “bacterial” or “viral” phenotype. Antibiotics were classified according to the World Health Organization (WHO) AWaRe classification. Results Of 2130 febrile episodes (excluding children with nonbacterial/nonviral phenotypes), 1549 (72.7%) were assigned a bacterial and 581 (27.3%) a viral phenotype. A total of 1318 of 1549 episodes (85.1%) with a bacterial and 269 of 581 (46.3%) with a viral phenotype received empiric systemic antibiotics (in the first 2 days of admission). Of those, the majority (87.8% in the bacterial and 87.0% in the viral group) received parenteral antibiotics. The top 3 antibiotics prescribed were third-generation cephalosporins, penicillins, and penicillin/ÎČ-lactamase inhibitor combinations. Of those treated with empiric systemic antibiotics in the viral group, 216 of 269 (80.3%) received ≄1 antibiotic in the “Watch” category. Conclusions Differentiating bacterial from viral etiology in febrile illness on initial ED presentation remains challenging, resulting in a substantial overprescription of antibiotics. A significant proportion of patients with a viral phenotype received systemic antibiotics, predominantly classified as WHO Watch. Rapid and accurate point-of-care tests in the ED differentiating between bacterial and viral etiology could significantly improve antimicrobial stewardship

    The Impact of Delayed Treatment of Uncomplicated \u3ci\u3eP. falciparum\u3c/i\u3e Malaria on Progression to Severe Malaria: A Systematic Review and a Pooled Multicentre Individual-Patient Meta-Analysis

    Get PDF
    BACKGROUND: Delay in receiving treatment for uncomplicated malaria (UM) is often reported to increase the risk of developing severe malaria (SM), but access to treatment remains low in most high-burden areas. Understanding the contribution of treatment delay on progression to severe disease is critical to determine how quickly patients need to receive treatment and to quantify the impact of widely implemented treatment interventions, such as \u27test-and-treat\u27 policies administered by community health workers (CHWs). We conducted a pooled individual-participant meta-analysis to estimate the association between treatment delay and presenting with SM. METHODS AND FINDINGS: A search using Ovid MEDLINE and Embase was initially conducted to identify studies on severe Plasmodium falciparum malaria that included information on treatment delay, such as fever duration (inception to 22nd September 2017). Studies identified included 5 case-control and 8 other observational clinical studies of SM and UM cases. Risk of bias was assessed using the Newcastle-Ottawa scale, and all studies were ranked as \u27Good\u27, scoring ≄7/10. Individual-patient data (IPD) were pooled from 13 studies of 3,989 (94.1% aged \u3c15 years) SM patients and 5,780 (79.6% aged \u3c15 years) UM cases in Benin, Malaysia, Mozambique, Tanzania, The Gambia, Uganda, Yemen, and Zambia. Definitions of SM were standardised across studies to compare treatment delay in patients with UM and different SM phenotypes using age-adjusted mixed-effects regression. The odds of any SM phenotype were significantly higher in children with longer delays between initial symptoms and arrival at the health facility (odds ratio [OR] = 1.33, 95% CI: 1.07-1.64 for a delay of \u3e24 hours versus ≀24 hours; p = 0.009). Reported illness duration was a strong predictor of presenting with severe malarial anaemia (SMA) in children, with an OR of 2.79 (95% CI:1.92-4.06; p \u3c 0.001) for a delay of 2-3 days and 5.46 (95% CI: 3.49-8.53; p \u3c 0.001) for a delay of \u3e7 days, compared with receiving treatment within 24 hours from symptom onset. We estimate that 42.8% of childhood SMA cases and 48.5% of adult SMA cases in the study areas would have been averted if all individuals were able to access treatment within the first day of symptom onset, if the association is fully causal. In studies specifically recording onset of nonsevere symptoms, long treatment delay was moderately associated with other SM phenotypes (OR [95% CI] \u3e3 to ≀4 days versus ≀24 hours: cerebral malaria [CM] = 2.42 [1.24-4.72], p = 0.01; respiratory distress syndrome [RDS] = 4.09 [1.70-9.82], p = 0.002). In addition to unmeasured confounding, which is commonly present in observational studies, a key limitation is that many severe cases and deaths occur outside healthcare facilities in endemic countries, where the effect of delayed or no treatment is difficult to quantify. CONCLUSIONS: Our results quantify the relationship between rapid access to treatment and reduced risk of severe disease, which was particularly strong for SMA. There was some evidence to suggest that progression to other severe phenotypes may also be prevented by prompt treatment, though the association was not as strong, which may be explained by potential selection bias, sample size issues, or a difference in underlying pathology. These findings may help assess the impact of interventions that improve access to treatment
    • 

    corecore