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Abstract

Relationships between viral load, severity of illness, and transmissibility of virus are fundamental to understanding
pathogenesis and devising better therapeutic and prevention strategies for COVID-19. Here we present within-host
modelling of viral load dynamics observed in the upper respiratory tract (URT), drawing upon 2172 serial
measurements from 605 subjects, collected from 17 different studies. We developed a mechanistic model to
describe viral load dynamics and host response and contrast this with simpler mixed-effects regression analysis of
peak viral load and its subsequent decline. We observed wide variation in URT viral load between individuals, over
5 orders of magnitude, at any given point in time since symptom onset. This variation was not explained by age,
sex, or severity of illness, and these variables were not associated with the modelled early or late phases of
immune-mediated control of viral load. We explored the application of the mechanistic model to identify measured
immune responses associated with the control of the viral load. Neutralising antibodies correlated strongly with
modelled immune-mediated control of viral load amongst subjects who produced neutralising antibodies. Our
models can be used to identify host and viral factors which control URT viral load dynamics, informing future
treatment and transmission blocking interventions.

Introduction
COVID-19 exhibits a wide range of severity, from
asymptomatic infection to severe disease leading to hos-
pitalisation and death. Age and sex have emerged as im-
portant risk factors for poor outcome [1, 2]. Viral load
in the respiratory tract has been reported as an add-
itional determinant of severity of illness [3, 4] and also a
determinant of likelihood of transmission [5]. However,
viral load varies over the course of illness due to dy-
namic interaction with the host immune response, and
measurements at single points in time provide limited
insight into this dynamic process. Within-host models of
viral load can help to distinguish the sequence of events
by tracking both viral dynamics and host response over

time, accounting for the effect of multiple factors simul-
taneously [4, 6, 7].
Studies measuring viral load over time in COVID-19

are beginning to establish viral dynamics and explore
correlates of protection in the host response, although
findings to date are somewhat contradictory and these
relationships are still not well characterised [8]. Viral
load in the upper respiratory tract (URT) peaks early in
infection, usually before or within a few days of symp-
tom onset [8–12]. Some studies suggest that viral load in
the lower respiratory tract (LRT) may peak later, in the
second week after symptoms [9], but this is much harder
to measure in a serial manner. Viral load at a given time
after diagnosis or detection tends to be similar between
asymptomatic and symptomatic cases [13], but evidence
tends towards a longer duration of viral shedding in
more severe cases and older individuals [14, 15]. Despite
the detection of viral material in URT samples from
some individuals several weeks after onset of symptoms,
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infectious virus is not usually present beyond 8–14 days
[16–19]. Viral shedding can also be detected in faeces,
often persisting longer than URT viral detection [20],
but there is little evidence that this contributes signifi-
cantly to transmission [21].
The host response during COVID-19 has many fea-

tures typical of an anti-viral immune response, including
the generation of antibodies and T cell populations [22].
Antibodies are chiefly considered to contribute to viral
clearance through pathogen neutralisation, though other
effector functions may be of significance to COVID-19
[23]. A diverse array of T cell populations are active dur-
ing COVID-19, including cytotoxic and helper popula-
tions. Whilst these cells contribute to viral clearance,
emerging data indicates that T cells may also contribute
to immunopathology in severe cases of COVID-19 [24].
Additionally, COVID-19 is associated with lymphopenia
in peripheral blood [25], possibly reflecting the migra-
tion of cells to the site(s) of viral infection. In addition to
these adaptive immune processes, innate immune pro-
cesses are considered to play a major part in the pro-
inflammatory state that scales with COVID-19 severity
[26].
Within-host models are being developed to character-

ise viral kinetics in relation to host responses and disease
outcomes and to guide therapeutic development. For ex-
ample, Néant et al. [27] found an association between
higher viral load late in infection and mortality. Goyal
et al. [28] inferred different stages of host response from
observing three stages of viral decline: a rapid drop fol-
lowing peak viral load, a period of slower decline, then
rapid elimination of the virus. Benefield et al. estimated
that viral load peaks prior to symptoms, suggesting sub-
stantial pre-symptomatic transmission [29]. Other
within-host models have been used to explore the poten-
tial effects of antivirals, immunotherapies, and prophy-
lactic treatment [30, 31]. More detailed models have
simulated viral load in different tissues and detailed
components of the innate and cellular immune response
[32, 33]. However, many modelling studies to date have
been calibrated to limited longitudinal data on viral load
and host responses, which reduces parameter identifia-
bility and the ability to infer pathways of pathogenesis
and protection.
In this study, we aimed to improve understanding of

how disease severity and immune response relate to
URT viral load by developing a model framework which
incorporates the dynamics of URT viral load over time.
First, we sought to combine longitudinal data from pub-
lished studies to characterise URT viral load dynamics
(including peak viral load and rate of decline in viral
load) in a large number of individuals, and to use linear
regression models to assess whether variation in URT
viral load was associated with age, sex or severity of

illness. Subsequently, we sought to fit a mechanistic
model to this data, relating viral load to viral replication
and its control by the immune response, and to investi-
gate whether this model could facilitate identification of
mechanisms which control URT viral load. We pragmat-
ically represented the complex host response to the virus
in two phases: an early phase which restricts the initial
rate of viral replication, and a later phase which acts to
clear the virus. We explored relationships between these
components of the model and measured T cell and neu-
tralising antibody measurements. This model represents
the first step towards a well-validated, flexible, and
open-source framework which can be utilised to better
interpret immune responses in COVID-19 in the context
of viral load and to understand how different treatments
given at different stages of illness might influence viral
load, transmission potential, host response, and
outcome.

Results
Our literature search revealed 53 studies reporting longi-
tudinal viral load measurements. We successfully ob-
tained individual-level viral load measurements from 19
studies (either from the supplementary materials of the
publication or preprint or by emailing the corresponding
authors). The analysis presented here utilises data from
17 of these studies (summarised in Table 1). Studies that
were identified but did not provide data are shown in
Supplementary Table 1. We excluded two studies that
contained little or no longitudinal data for URT samples
[49, 50]. In all studies, a description of disease severity
for each patient was available, although the level of detail
varied between studies. In six studies viral loads were
fully quantified from concurrent standard curves, whilst
in the remaining 11 studies, cycle-threshold (Ct) values
were reported. To combine data from different studies
we generated an “average” standard curve, using data
from 7 previously reported standard curves to convert
Ct values to viral load per ml (Supplementary Fig. 1).
Details on antiviral or immunomodulatory treatments
were available for some studies (Supplementary Table
2).
In total, 2172 URT samples from 605 patients were

used for analysis. Subject-level data on age and sex were
available for 576 subjects and missing for 29 subjects.
The majority (492 out of 576; 85%) of subjects were
under 60, compared to 84 (15%) aged 60 or over; 321
(55%) patients were female. Disease severity was cate-
gorised using the WHO scale [51], where 501 (83%) pa-
tients (contributing 1698 (78%) samples) experienced
mild COVID-19 illness, 65 (11%) patients (contributing
359 (17%) samples) had moderate severity illness, and 39
(6%) patients (contributing 115 (5%) samples) had severe
illness. Supplementary Fig. 2 shows the viral load data
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for all patients, presented separately for each study. The
vast majority (2163, or 99.6%) of samples were taken
after the onset of symptoms, although samples were col-
lected from a minority (8 patients across all 17 studies)
prior to symptom onset e.g. if they were identified as a
close contact of another patient. The median timing of
swabs was 12 days after symptom onset (interquartile
range: 6–19; range: 2 days before symptom onset to 54
days afterwards). Pooling the data from all studies, we
found that the median viral load peaked one day after
symptom onset (Fig. 1a), although less data was available
on the day of symptom onset compared to subsequent
days (Fig. 1c). 421 patients had more than one URT
swab recorded: for 60.1% of these patients, the first sam-
ple had the highest recorded viral load. Viral load

estimates at corresponding times after the onset of
symptoms did not differ systematically between studies
in which viral load was calculated by the authors of the
original study or inferred from our averaged standard
curve (Fig. 1b), although less data was contributed by
studies which used concurrent standard curve quantifi-
cation (Fig. 1d).
The timing of the first sample obtained relative to the

onset of symptoms varied with the severity of illness.
Subjects with moderate or severe disease had first sam-
ples collected later in their illness than those with mild
disease (Supplementary Fig. 3a). Accordingly, the first
viral load and maximum viral load measurements for
subjects with moderate or severe disease in these studies

Fig. 1 Declining viral loads after symptom onset. a Data from all 17 studies used in our analysis (circles). For illustrative purposes, viral samples
that were negative for the virus are set to 1 viral copy per ml. The median viral load is calculated for each day (purple line), as well as the
interquartile range (purple shaded region). From day 20 onwards, over half the samples recorded on each of these days were below the limit of
detection. b Here we show the quantified PCR data (yellow) separately from the data for which viral loads were estimated (blue) using an
averaged standard curve (Materials and methods). In the lower panels (c, d), we display the number of data points available on each day for
this analysis
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were lower than in those with mild disease (Supplemen-
tary Figs. 3b and 3c).

Fitting a regression model to the viral load data
We fitted two types of models to the viral load data from
the first 15 days from onset of symptoms (see the “Mate-
rials and methods” section), using only subjects with at
least three samples during this time period (models fit-
ted to 870 samples from 155 patients from 16 studies).
The first was a linear regression model, fitted to log-
transformed viral loads. This model included patient-
and study-specific random effects, which captured vari-
ation from the average behaviour observed across 16
datasets. There was variation in the peak and slope of
the viral loads across different studies (Fig. 2, Supple-
mentary Table 3). The variation in the (log-transformed)
peak viral load varied over several orders of magnitude.
Some of this variation was explained by study-specific
differences: the standard deviation of the between-study
variation in the peak viral load was 0.84, i.e. nearly one
order of magnitude (Supplementary Table 3). This could
be due to a number of factors, such as the method of
sample collection, quantification method or characteris-
tics of included patients. Furthermore, viral loads in sev-
eral studies were estimated using an averaged standard
curve, which introduces some uncertainty into the mag-
nitude of the viral load. However, the inclusion of study-
specific random effects allows such data to be appraised
alongside data from other studies.
Within this regression framework, we incorporated in-

formation on age, disease severity and sex (Materials
and methods) to see if the goodness of fit could be im-
proved. We added fixed effects for these three variables,
both separately and in combination. We separately ex-
amined age as a continuous variable or a dichotomous
variable (stipulating whether patients were 60 years of
age or over). The goodness of fit to the data did not vary
appreciably: here we report results for age as a dichot-
omous variable. As we had relatively few (29) samples
from patients with severe disease in the subset of the
data considered here, we pooled patients with moderate
disease and severe disease together. The inclusion of the
fixed effects for age, sex, or severity did not improve the
model fit (Table 2, Supplementary Table 4). In other
words, the wide variation between individuals observed
in the viral load dynamics could not be explained by the
inclusion of these variables (Fig. 3).
We used simulation-based methods (Materials and

methods) to estimate the power of our analysis to detect
different effect sizes for severity, age and sex on peak
viral load (Supplementary Fig. 4). For severity and sex,
our analysis has 80% power to detect a difference of
around 1.1 in the log10 viral load (about a 12-fold differ-
ence in viral load), whereas power was lower for

detecting the effect of age. Importantly the detectable
differences are considerably smaller than the inter-
individual variation in viral load at any given time point
(Supplementary Table 3), indicating that these are not
the major determinants of viral load.

Fitting a mechanistic model to the viral load data
In addition to modelling viral load decline using regres-
sion models, we also developed a mechanistic model
which we fitted to the dataset. We elected to keep the
model relatively simple due to a lack of identifiability be-
tween more complex model structures. We represented
the multi-faceted immune response to the infection via
two components (Fig. 4). First, the exponential growth
of viral load in the initial phase of infection is brought
under control by an early immune response. Subsequent
to this, the infection is gradually cleared by a late im-
mune response. The early immune response is stimulated
by a high load of infected cells and starts to block viral
replication and the invasion of susceptible cells. The late
response requires a maturation phase before it becomes
effective and is, therefore, more representative of the
adaptive immune response. However, we do not attempt
to fully distinguish between innate and adaptive re-
sponses in this model, as the interplay between them is
complex.
To guide the model fitting (see the “Materials and

methods” section), we made the assumption that both
the peak viral load and the activation of the early im-
mune response should roughly be concurrent with the
onset of symptoms. The vast majority of subjects in the
dataset were only under observation after the onset of
symptoms, which means we are unable to infer the rate
of exponential growth during the initial phase of the in-
fection. For each subject, we fitted two parameters in the
mechanistic model, holding all other parameters fixed
(see the “Materials and methods” section). One of these
free parameters governs the density of infected cells re-
quired to activate the early response, whilst the other de-
termines the rate at which the late response clears
infected cells and, therefore, the rate at which the viral
load declines. As we did for the regression modelling, we
used a nested random effect structure, with study- and
patient-specific random offsets for both of these parame-
ters (Materials and methods). In addition, we incorpo-
rated data points that fell below the limit of detection in
each study by accounting for censoring in the likelihood
(Materials and methods).
This approach allowed us to characterise the average

time-course of an infection at the population-level, i.e.
after removing study- and patient-level offsets (Fig. 5,
Supplementary Table 5), as well as showing the dynam-
ics for the study-specific fits to the data. There was no
significant relationship between the subject-specific
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random effects for either of the model parameters and
maximum disease severity (Supplementary Fig. 5), con-
sistent with the outcome of the preceding regression
modelling (Table 2). Similarly, there was no significant
relationship between the subject-specific random effects

and subject age or sex (not shown). Supplementary Fig.
6 shows the 95% credible intervals for the study-specific
random effects, showing the between-study variation in
both the peak viral load (panel a) and the rate at which
the infection is cleared in the URT (panel b).

Fig. 2 Viral load data and mixed-effects regression model. Data from all 16 studies used in the regression modelling (numbered as in Table 1),
showing samples taken within the first 15 days of symptom onset. We fitted a regression model to the data, with study-specific random-effects
for the peak viral load and rate of decline (slope). The solid lines show the posterior mean behaviour for each study, with the shaded areas
showing the 95% credible intervals. The dashed line, which is the same in each panel, is the average trajectory across the 16 studies. The 95%
credible interval for the averaged trajectory is shown by the grey shaded region. Population-level parameters for this model are shown in
Supplementary Table 3
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Table 2 Assessing the goodness of fit of the regression models

Fixed effects included WAIC ΔWAIC dSE Model weight in ensemble

Data from all studies (n=16)

None 2222.5 - - 0.62

Severity 2223.5 1.0 1.1 0.38

Data from studies (n=14) with demographic information

None 1796.6 - - 0.33

Age 1797.4 0.8 1.2 0.22

Severity 1798.8 2.2 1.0 0.11

Sex 1798.9 2.2 0.9 0.11

Severity + sex 1799.7 3.0 1.4 0.07

Age + sex 1799.7 3.1 1.1 0.07

Age + sex + severity 1800.7 4.0 1.9 0.04

Age + severity 1800.7 4.0 1.7 0.04

Three fixed effects (severity, age, sex) were added to linear regression models of viral load over time, separately or in combinations (see the “Materials and
methods” section), to determine the extent to which they explained variation present in the data. All studies included in this analysis described the severity of
disease for each patient. However, patient-level demographic information was only provided in 15 of the 17 studies. Hence, a separate analysis was carried out for
these studies. In each analysis, the best-fitting model is the one with the lowest WAIC value, as indicated in bold. The value of ΔWAIC indicates the difference in
goodness of fit between each model and the one that provided the best fit to the data, whilst dSE denotes the standard error of the difference in WAIC between
each model and the best-fitting one. In each analysis, we provide the Akaike weight of each model in the ensemble of candidate models that were analysed
(Materials and methods). As a sensitivity analysis, we also assessed the goodness of fit by leave-one-out cross-validation [52], which resulted in very similar
conclusions (see Supplementary Table 4)

Fig. 3 Inclusion of fixed effects in the regression models. All regression models included study- and patient-specific random effects for the peak
and slope (i.e. rate of decline) of the viral load. We then added fixed effects, both separately and in combination, to see if the model fit could be
improved (Table 2). These fixed effects were: age, sex, and severity of disease. Here we show results for the three models containing one fixed
effect (left: severity; middle: age; right: sex). The inclusion of severity, age, or sex did not improve the goodness of fit (Table 2). In the modelling
here, age was included as a binary variable (under or over 60 years of age)
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Fig. 4 Schematic of the mechanistic model. a Illustration of the components of the model. The infection is triggered by an initial inoculum of
virus in the upper respiratory tract. The virus invades susceptible cells (S): once cells are infected (I) they can produce more of the virus (V). In this
manner, the infection grows exponentially. The presence of infectious cells triggers the immune response. In the model, we capture this using an
early immune response and a late immune response (A). Activated by a high density of infected cells, the effect of the early immune response is
to reduce susceptibility of cells to the virus, thereby slowing the rate of growth of the infection. The late immune response, which requires a
maturation phase before becoming effective, reduces the infectious cell reservoir, eventually resolving the infection. These two mechanisms
represent a simplification of a much broader response, involving innate and adaptive mechanisms. The early response, the activation of which
coincides with symptom onset, is more representative of the innate immune response, whilst the late response is more representative of the
adaptive response. However, we do not attempt to fully distinguish between innate and adaptive responses in this model, due to their complex
interplay. b Linking the model’s mechanisms to the observed viral load dynamics. Prior to the activation of the immune responses, viral load
grows exponentially. Activation of the early immune response, which causes febrile symptoms, slows the growth rate. After a maturation phase,
the late immune response starts clearing the infectious cells, leading to a decline in the circulating virus. Eventually, the infection becomes
undetectable when the viral load passes below the limit of detection (LOD)
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Supplementary Fig. 8 shows modelled viral loads for
each of the 155 subjects used to fit the mechanistic
model.

Relating viral load dynamics to SARS-CoV-2-specific
immune responses
To demonstrate the potential to link viral load dynamics
to SARS-CoV-2-specific adaptive immune responses in
individual subjects, we made use of detailed data on neu-
tralising antibody and T cell responses from the study by
Tan et al. [7]. We compared this immunological data
with the patient-specific late immune response param-
eter fitted in our mechanistic model in these 12 patients,
to attempt to gain insight into within-host mechanisms
that might control the viral load (Fig. 6). Specifically, we
assessed the total interferon-γ (IFN-γ) T cell response to
SARS-CoV-2 peptides measured in an ELISPOT assay
and results from a surrogate virus antibody neutralisa-
tion assay. Simple logistic curves were fitted to the data
from each subject’s measured immune responses, and
the area under each curve (AUC) was used as a measure

of the magnitude of each subject’s immune responses
(Fig. 6b, c). Overall, no significant correlation was ob-
served between the modelled late immune response and
the total interferon-γ (IFN-γ) T cell response (r = 0.39, p
value = 0.208, see Fig. 6d) or the neutralising antibody
response (r = 0.07, p value = 0.831, see Fig. 6e). How-
ever, we noted two subjects (subjects 1 and 12) displayed
quite distinct immune responses to the others, charac-
terised by absent neutralising antibody, and initially high
but subsequently declining total interferon-γ (IFN-γ) T
cell responses, possibly indicating a qualitatively different
response to SARS-CoV-2. When these two subjects were
removed from the analysis, a much stronger correlation
was observed between the modelled late immune re-
sponse and surrogate virus antibody neutralisation (r =
0.79, p value = 0.006).

Discussion
Understanding the causes and consequences of variation
in pathogen load is fundamental to infectious disease re-
search [53]. Increasing pathogen load can drive both

Fig. 5 Averaged trajectories obtained from the fitted mechanistic model. In this plot, we show the average trajectory predicted for each study
(coloured lines), generated using the median value used for the initial viral load at t=0 in each case. We also show the average trajectory across
all the studies, indicated by the black line. The dark grey shaded area indicates the 95% credible interval for this average trajectory. The light grey
area accounts for the variation observed around the average trajectory (generated using samples from σ, as defined in in Eq. 8, and calculating
the 95% prediction interval for the population-level dynamics). The fit to data from Study 3 is not shown, as this study only contained one
patient, which means one cannot distinguish between study- and patient-specific random effects. The opaque black circles are the data points
from the 16 studies used to fit the model. For illustrative purposes, viral samples that were negative for the virus are set to 1 viral copy per ml (i.e.
0 on the log-scale). The results from the mechanistic model presented here were obtained using 1500 samples from the posterior distribution,
with the median trajectories plotted
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pathogenesis and transmission of infection [54]. High
viral load in COVID-19 has been associated with severity
of illness in some studies [3, 4], but not others (see e.g.
Ref. [55]), and has been associated with risk of transmis-
sion [5]. Pathogen load is dynamic, it varies over time,
and is often considered to be the stimulus for the host
response, as well as a target of the host response. There-
fore, any attempt to establish the determinants of patho-
gen load and relationships between pathogen load,

severity, and transmissibility should account for these
dynamics.
We collated longitudinal URT viral load data from

2172 samples taken from 605 subjects with SARS-CoV-2
infection in 17 studies, to investigate the association of
viral load dynamics with age, sex, and severity of illness.
We used the WHO clinical progression scale to stand-
ardise varied descriptions of disease severity reported in
different studies. We used two distinct modelling

Fig. 6 Paired viral load and immune response dynamics. These panels show data from 12 patients, reported by Tan et al. [7]. a Viral load
measurements (points) and modelled viral load trajectories from the mechanistic model (black lines show the posterior means, shaded areas are
the 95% credible intervals). The coloured symbols indicate the severity score recorded for each subject (on the WHO severity scale). b Measured
total T cell response (blue symbols), rescaled by the largest observed measurement. A logistic curve was fitted through the points for each
patient, to facilitate the area under the curve (AUC, blue shaded area) calculation. To calculate both AUCs (antibody and T cell) we used only the
first 15 days after symptom onset, as this was the time period used to fit our models. c Neutralising antibody response (purple dots). A logistic
curve was fitted through the points for each patient, to facilitate the area under the curve (AUC, purple shaded area) calculation. d Relationship
between the calculated AUCs of the T cell responses and modelled patient-specific immune responses (p value = 0.208). e Relationship between
the calculated AUCs of the antibody responses and modelled patient-specific immune responses. Two patients failed to mount an antibody
response which neutralised virus. The correlation between the patient-specific response and the AUC is much stronger when these patients are
not included (p value = 0.006, compared to p value = 0.831 when all 12 subjects are considered). We note that for subjects 4 and 8 (open circles
in d and e), fewer than 3 viral load measurements were available, meaning their fitted parameters may shrink to the study mean
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approaches to characterise viral load dynamics, account-
ing for systematic differences in viral load estimation be-
tween studies. We found no evidence to support the
hypotheses that URT viral load dynamics are substan-
tially influenced by age or sex, or that URT viral load dy-
namics influence the severity of illness. We also found
no association between severity and the latent variables
describing early and late immune responses to the URT
virus in our mechanistic model. Nevertheless, we identi-
fied considerable inter-individual variation in URT viral
load dynamics. Understanding the biological basis for
this variation could help to identify new approaches to
reduce transmission of SARS-CoV-2.
The lack of association between URT viral load dy-

namics and severity of illness is particularly interesting.
On one hand, this is not necessarily surprising since se-
vere COVID-19 is predominantly a consequence of LRT
and systemic disease processes, and some studies have
indicated that viral load in LRT samples is more strongly
associated with severity of illness [9]. On the other hand,
this would imply that distinct processes govern URT and
LRT viral load dynamics, or that the extension of infec-
tion from URT to LRT and other systemic locations is
controlled by different mechanisms to those controlling
local viral load. Although it is difficult to obtain serial
LRT viral load measurements, evaluating distinct mecha-
nisms controlling local and spatial viral dynamics could
be important to understand the pathogenesis of COVID-
19 and other respiratory infections.
Our study provides one of the most comprehensive as-

sessments of URT viral load dynamics, but despite col-
lating data from a large number of studies we had a
relatively low proportion of patients with very severe ill-
ness and very few from those with fatal infection, poten-
tially reducing our ability to distinguish different viral
dynamics in these groups. We also had very little data
on URT viral loads before the onset of symptoms, which
limits our ability to model variation in the rate of in-
crease in viral load early in infection or consider the in-
cubation period as a possible covariate. We lacked data
on the interval from exposure to symptoms, forcing us
to fix this parameter in our mechanistic model. This
means we were unable to properly explore the role that
the initial viral dose plays in the dynamics. Furthermore,
we did not have sufficient data on ethnicity, or other
host characteristics besides age and sex, for which it may
have been instructive to examine associations with viral
load dynamics. We extracted data on antiviral treatment
in different studies where possible (Supplementary Table
2), but there were too few subjects receiving each treat-
ment to allow meaningful analysis.
We used two modelling approaches to analyse the

data. Mixed-effects regression modelling sought to de-
termine if any of the wide variation observed in patients’

URT viral loads could be explained by age, sex, or dis-
ease severity. The inclusion of these variables, separately
and in combination, did not improve the model fit.
However, our power analysis suggests that we cannot
confidently exclude smaller differences in viral load (e.g.
an increase or decrease in peak viral load of less than
tenfold) due to these variables. We believe our power
analysis provides useful insight into the capacity of such
models to detect differences in viral load dynamics in
different subpopulations. Another limitation is that we
did not consider correlations between covariates inde-
pendent of the viral load. One could imagine a more
complex model where age or sex (or both) could be as-
sociated with severity both through changes in viral load
and through changes in severity at a given viral load.
However, given that each covariate separately did not
have a significant effect on viral load, considering corre-
lations between these variables is unlikely to affect our
results.
In order to utilise as much data as possible, we have

included semi-quantitative data (presented as Ct values)
alongside fully quantitative viral load data. We have con-
verted the former using an averaged standard curve.
Modelling the data with study-specific random effects
provides a way to analyse all the data collected, without
requiring study-specific standard curve data. Adding
data from more studies in future will allow us to exam-
ine whether the conclusions of our analyses are influ-
enced by this approach.
It is useful to compare the two modelling ap-

proaches—fitting a regression model to capture the peak
viral load and the rate of its decline versus using a mech-
anistic model. With the former approach, we avoid mak-
ing assumptions about the mechanisms controlling viral
load or overfitting the data, given that only a few viral
load data points are available for each individual and im-
mune data were not available for most individuals. On
the other hand, no insight is obtained about the mecha-
nisms underlying the differences between peak and
slope. The mechanistic model provided more insight in
this regard, but would benefit from longitudinal data for
components other than the viral load.
It is interesting to compare our mechanistic model to

others that have been fitted to viral load data. Goyal
et al. [28] developed a more complex model, which was
able to capture a changing rate of decline in viral load
observed in the patient data available to them. However,
one should note that in our model we are fitting to a
narrower timeframe (no more than 15 days after symp-
tom onset, due to lack of viable infective virus after this
time), so it may be that the changing rate at which viral
load declines is not so noticeable during this phase of
the infection. This narrower time frame was one factor
that led us to choose a relatively simple model structure.
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Another difference between the two approaches is that
we use the time of symptom onset to centre the dynam-
ics (i.e. set time equal to zero), whereas Goyal et al. used
the time of the first swab. When considering data from
many different subjects, using symptom onset for tem-
poral alignment helps adjust for the wide variation in
the time of sample collection, particularly as we ob-
served a relationship between disease severity and the
time of the first sample collection in the studies consid-
ered here (Supplementary Fig. 3). Amongst the within-
host models already published, one finds a wide vari-
ation in model complexity. Some models, such as the
one presented here, have erred on the side of parsimony,
whilst others have sought to capture very intricate
within-host processes (see e.g. Ref. [33]). Our parsimoni-
ous approach was influenced by the lack of immuno-
logical data for the vast majority of subjects considered
here, which hampered our ability to elucidate specific
within-host mechanisms in more detail. An interesting
avenue for further work would be to use goodness-of-fit
criteria, such as the one used here for the regression
modelling, to explore the extent to which more compli-
cated models explain more of the variation present in
the data.
We have demonstrated the potential to relate mod-

elled viral load dynamics, and the immunological deter-
minants of the model, to measured immunological data
for individual subjects. It is not surprising that circulat-
ing SARS-CoV-2-specific T cell responses are poor cor-
relates of the late immune response controlling viral
load, because these cells would need to migrate from the
circulation to other locations like the respiratory tract to
control virus. It is reassuring that when we considered
individuals who did mount a neutralising antibody re-
sponse, we saw that antibody neutralisation did correlate
well with the late immune response parameter of our
model, consistent with the evolving evidence that a neu-
tralising antibody does indeed play an important role.
However, it is now well established that some individuals
do not mount a detectable serum antibody response to
SARS-CoV-2; nevertheless, they have protective immun-
ity against re-infection [56], and applying this modelling
approach to much larger numbers of subjects might help
to identify alternative or additional protective mecha-
nisms. Due to the dynamic interplay between viral load
and the immune response, more biological insight can
be gained from mechanistic modelling, compared to
using summary statistics or regression modelling.
In conclusion, our study clearly illustrates that the re-

lationships between URT viral load and COVID-19 se-
verity or immune responses need to be assessed in the
context of the dynamic changes in URT viral load over
time. The lack of association between URT viral load dy-
namics and severity, age or sex in our analysis, indicates

that measuring the effects of anti-viral or adjunctive
treatments on URT viral load may not be very useful for
predicting their effects on severe COVID-19 illness.
However, the mechanistic model we have developed
provides a framework for the identification of immuno-
logical mechanisms which may control the transmission
of SARS-CoV-2 through their action on viral load. We
believe our mechanistic model has the potential to accel-
erate the discovery of mechanisms and therapeutics
which suppress URT viral load and therefore reduce
transmission. We present this tool for other researchers
to use with different patient populations, combining se-
quential viral load measurements and paired measure-
ments of immune response parameters, to identify
mediators associated with early or late phase immune
responses controlling URT viral load. This would be par-
ticularly well-suited to prioritisation of candidate mech-
anistic correlates in high dimensional omics datasets and
may provide leads for desirable vaccine-induced re-
sponses or novel therapeutic approaches to reduce trans-
mission of SARS-CoV-2.

Materials and methods
Data
To collect data on viral load dynamics, we searched
PubMed and medRxiv for studies that recorded longitu-
dinal viral load data from individuals with symptomatic
COVID-19 infections. Searches were carried out be-
tween May 20, 2020, and February 11, 2021. In particu-
lar, we searched for studies that reported the timing of
symptom onset for each patient, which we used to tem-
porally align samples from different patients. We identi-
fied 53 studies, data from 5 of which could be extracted
from the publication or preprint. We contacted the au-
thors of 48 studies by email to request access to patient-
level data, and we received data from 14 of these studies.
Two of the 19 studies were dropped from this analysis,
as they contained little or no longitudinal data for URT
samples. Studies for which data was obtained are sum-
marised in Table 1: all remaining studies identified by
our literature search are summarised in Supplementary
Table 1. We extracted as much information as possible
on the severity of illness experienced by the patients and
extracted demographic information on the patients
where available. Two authors independently studied the
severity information and matched the descriptions to the
WHO clinical progression scale [51]. Some articles con-
tained detailed information on the course of disease for
each patient, but this was not available in all the studies.
We considered scores of 1–3 to represent mild disease,
4–6 to represent moderate disease and scores above 6 to
represent severe disease. This is slightly different to the
patient state descriptors of the WHO scale, because the
majority of studies did not provide sufficient detail about
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the method of oxygen delivery to allow us to distinguish
between scores of 5 and 6. In some studies, the severity
of symptoms was recorded at multiple timepoints, over
the course of the infection. Here, we use the term ‘sever-
ity’ to describe the maximum severity of disease experi-
enced by each patient.
Although some studies with a long follow-up period

demonstrate that some patients can remain PCR-
positive for the virus for well over a month [57, 58], sev-
eral studies [16, 17] have demonstrated that very few
people are infectious, based on URT swabs, beyond 10
or 14 days after symptom onset. Data collected after this
period is likely to reflect RNA debris that remains in the
URT. Therefore, our models of viral load are fitted to
data points within the first 15 days of symptoms. This
means that we have fewer data points to fit to (Table 1),
but we believe that the meaningful dynamics, in terms of
how the host controls the infection, are found in this
time period.

Viral load quantification
In all studies, real-time polymerase chain reaction (PCR)
assays were used to quantify URT virus either as Ct
values, or as viral copies per ml (V). As discussed in Ref.
[59], calculation of viral copies per ml from Ct values re-
quires the use of a ‘standard curve’, which is calibrated
to the experimental set-up in a particular laboratory
using reference samples. In general, these curves have
the form:

V ¼ 10a−bCt: ð1Þ

Here a and b are positive numbers that fully specify
the viral load for a given Ct value. This relationship indi-
cates that there is a linear relationship between log-
transformed viral loads and the raw Ct values, with
higher Ct values representing lower viral loads. The
units of V vary between studies (e.g. viral copies per ml,
per swab, or per 1000 cells), all studies collected here
that have quantified viral load have used viral copies per
unit of volume. We collected as many different standard
curves as possible, from the studies included in this ana-
lysis [34, 43] and from other papers in the COVID-19
literature [50, 60–62], to understand the variation ob-
served. From these, we determined an ‘averaged’ stand-
ard curve (Supplementary Fig. 1), using the mean
observed values for parameters a and b, which we used
to estimate the viral loads for studies for which only Ct
values were available. This enabled us to pool data from
all 17 studies.

Models
We sought to explain variation in viral load (either its
peak value or its rate of decline over time) amongst

patients, due to (e.g.) age, sex, and severity of the dis-
ease. We did this using two types of models, a linear
mixed effects regression approach and a mechanistic
model, which took the form of a system of first-order
differential equations. Both models were fitted to viral
load data from within 15 days of symptom onset, using
only subjects with at least three samples taken during
this time period (models fitted to 870 samples from 155
patients from 16 studies). Therefore, as indicated in
Table 1, no data from study 13 was used to fit the
models.

Linear regression models
Bayesian regression models were fitted using RStan [63],
with some of the analysis carried out using the rethink-
ing package [64]. Linear models were fitted to log-
transformed viral loads, with random effects for each pa-
tient and study applied to the parameters determining
the peak viral load, which we assumed coincides with
the onset of symptoms, and rate of its decline over time.
Samples for which no virus was detected were treated as
being below limit of detection (LOD), rather than truly
virus negative. We show the general form of the regres-
sion model here, where L is the likelihood of each data
point, to illustrate the random-effect structure and the
censoring of the data:

V > 0 : L ¼ N log10V μ; σj� �
V ¼ 0 : L ¼ NCDF LOD μ; σjð Þ

μ ¼ a0 þ a1 study½ � þ a2 patient½ �þ
b0 þ b1 study½ � þ b2 patient½ �ð ÞDay

a0∼N 5; 5ð Þ
b0∼N 0; 1ð Þ

a1 study½ �; b1 study½ �ð Þ∼N2 0; 0ð Þ; ρstudy; σstudy

� �
a2 patient½ �; b2 patient½ �ð Þ∼N2 0; 0ð Þ; ρpatient; σpatient

� �
σstudy∼Cauchy 0; 2ð Þ
σpatient∼Cauchy 0; 2ð Þ

ρstudy∼LKJ 2ð Þ
ρpatient∼LKJ 2ð Þ
σ∼Cauchy 0; 2ð Þ

ð2Þ

This model is relatively simple: the log-transformed
viral loads are captured by a linear model, with the inter-
cept describing the viral load at the time of symptom
onset, and the slope capturing the rate at which the viral
load subsequently declines. The log-transformed viral
load for a given patient is normally distributed around a
modelled trajectory, which is described by μ, with a
standard deviation given by σ. For data points where no
virus was detected, the likelihood takes a different form.
We calculate the likelihood as the probability of the viral
load being below the LOD, writing NCDF as the
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cumulative distribution function of the normal distribu-
tion. We allow for the fact that the LOD is study-
specific (indicated in Fig. 2). All remaining terms in Eq.
2 define the prior distributions for the parameters. Both
the slope and the intercept have a parameter that cap-
tures the average behaviour across all patients in all
studies (a0 and b0 respectively). Random effects capture
patient- and study-specific deviations from the average
behaviour. Both the patient- and study-specific random
effects are normally distributed with zero mean: here we
write N2 to indicate the bivariate normal distribution.
We allow correlation between the random effects on the
intercept and slope at each level, as indicated by the
presence of parameters ρstudy and ρpatient. For these pa-
rameters, we use the LKJ distribution [65] as a prior.
Within this framework, fixed effects could then be

added to the model, to assess whether (e.g.) severity of
disease, or the sex of patient affected the typical viral
load trajectory observed. To do this, we simply add
terms to μ in Eq. 1. Here we illustrate this for sex, mak-
ing female the reference category:

μ ¼ a0 þ a1½study� þ a2½patient� þ aMMaleþ
ðb0 þ b1½study� þ b2½patient� þ bMMaleÞDay
aM∼Nð0; 1Þ
bM∼Nð0; 1Þ:

ð3Þ

Here variable ‘Male’ is equal to 1 if the patient is male
(0 otherwise), and we have also added zero-mean priors
for the new parameters. As mentioned above, severity
was expressed on the WHO scale, which takes values
from 1 to 10. As 1 is asymptomatic, severity in our data-
set is limited from 2 (mild symptoms, not hospitalised)
to 10 (dead). As the dataset contains relatively few sam-
ples from patients with severe disease (score 7 to 10 on
the WHO scale), we chose to make two groups from
these categories: mild (2 or 3) and moderate or severe
(4–10). When severity is included in the model, μ
becomes:

μ ¼ a0 þ a1½study� þ a2½patient� þ aSMModSevþ
ðb0 þ b1½study� þ b2½patient� þ bSMModSevÞDay
aSM∼Nð0; 1Þ
bSM∼Nð0; 1Þ:

ð4Þ
Here variable ‘ModSev’ is equal to 1 for patients with

moderate or severe disease (0 otherwise). In most stud-
ies, patient age is given in years, as an integer value.
Some studies expressed the age of patients in decades,
e.g. 10–20 years of age. For these studies, we used the
midpoint of the age range given for each patient. We
grouped age into two groups: < 60 years of age and ≥60

years of age. In the regression modelling, we added a
fixed effect for age, making the youngest age group the
default. Here, μ takes the form:

μ ¼ a0 þ a1½study� þ a2½patient� þ aAAgeþ
ðb0 þ b1½study� þ b2½patient� þ bAAgeÞDay
aA∼Nð0; 1Þ
bA∼Nð0; 1Þ:

ð5Þ

Here variable ‘Age’ is equal to 1 for patients aged 60
or over (equal to 0 otherwise). We also looked at includ-
ing subject age as a continuous variable, but the good-
ness of fit did not change appreciably. We added the 3
terms (age, severity, sex) to the regression models both
separately and in combination. We assessed the good-
ness of fit using the Watanabe Akaike Information Cri-
terion (WAIC) [65], with the best-fitting model having
the lowest WAIC value. As the WAIC for each candi-
date model is estimated from a finite sample, its stand-
ard error was calculated using the rethinking package
[64] to appreciate the uncertainty in its value. These
standard errors are useful when appraising the differ-
ences in WAIC between candidate models. The relative
goodness of fit of a given model can also be appraised by
calculating its Akaike weight amongst the set of all con-
sidered models. This can be interpreted as the probabil-
ity that this model, out of the set of models considered,
would provide the best fit to new (i.e. out of sample)
data [65].
We use simulation-based estimation of statistical

power to assess our capacity to detect a difference in
viral load dynamics due to one of the three factors (sex,
age, severity of disease) assessed here. We generated syn-
thetic datasets of the same size as the one considered
here, with study- and patient-specific random effects of
the same magnitude (Supplementary Table 3). For sim-
plicity, we generated datasets with an equal number of
samples per subject, and the sampling times were ran-
domly generated from a uniform distribution. When
generating the data, we assumed that the peak viral load
was influenced by one of the three aforementioned fac-
tors. We then ran the regression analysis, to see if the
modelled effect could be detected. To reduce computa-
tion time, we here used frequentist regression via the
lme4 package in R [66], with a p value < 0.05 for the in-
cluded fixed effect indicating a significant finding. Gen-
erating 1000 synthetic datasets, the statistical power can
be estimated as the percentage of datasets for which the
regression analysis found a significant effect. Supplemen-
tary Fig. 4 shows how the statistical power varies with
the magnitude of the modelled effect, which is here
expressed as a fold difference in the peak viral load. The
results of the power analysis suggest that we were not
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well powered to measure relatively small differences in
peak viral load (under 10-fold difference). The power to
measure sex-specific differences in peak viral load was
slightly higher than the power to measure severity- or
age-specific differences, as we have a better balance be-
tween samples from male and female samples than we
do between samples in under 60 s and over 60 s, or sam-
ples from subjects from mild disease versus samples
from subjects with moderate or severe disease.

Mechanistic model
We also developed a mechanistic model to describe the
viral dynamics. We started modelling the infection 5
days before the onset of symptoms. At this time, an ini-
tial dose of virus V0 is introduced. These virions start in-
vading susceptible cells at rate β. Infected cells then
produce more virus at rate p, which can then invade
subsequent susceptible cells. Meanwhile, free virions are
cleared at rate γ. In this way, the viral population grows
exponentially. In the model, this growth is brought
under control by an early phase of the immune response,
and then the infection is gradually cleared by a later
phase of the immune response. We do not seek to spe-
cify the immunological mechanisms contributing to
these phases of the immune response. In each infection,
the exponential growth slows as the population of in-
fected cells approaches a certain value (Imax). This re-
flects a combination of two within-host mechanisms: the
depletion of susceptible cells in the URT and the effect
of an early phase immune response which is triggered at
a high level of infection. Since these mechanisms may be
linked, i.e. the immune response may modify the suscep-
tibility of target cells, we do not attempt to distinguish
between them, or to explicitly model the population of
susceptible cells.
After the exponential growth is brought under control,

the infection is cleared by the late immune response. In
this model, this is triggered by a certain density of in-
fected cells but requires a maturation stage before it be-
comes effective at clearing infected cells. We write the
system of equations as:

dI
dt

¼ βV 1−
I

Imax

� �� 	
−kaI

A2
3

A2
3 þ A2

50
dV
dt

¼ pI−γV

dA1

dt
¼ I

I þ I50
−kcA1

dA2

dt
¼ kcA1−kcA2

dA3

dt
¼ kcA2:

ð6Þ

The late immune response, represented here by vari-
ables (A1,A2,A3), is stimulated by the presence of

infected cells. A Hill function is used to make the adap-
tive response dimensionless, and to rescale its value
(daily input into compartment A1 scales between 0 and
1). Parameter I50 (here fixed to a value of 1000 cells) de-
termines the magnitude of the density of infected cells
required to stimulate this response. It requires time to
mature (governed by rate parameter kc, which we fix at
0.33 day−1), meaning that only stage A3 is able to clear
infected cells. Once mature, the late response does not
wane in this model, as we are only interested in its abil-
ity to clear an infection, not how long it persists after
the infection has been resolved. In this way, the late re-
sponse recapitulates features of adaptive cell-mediated
and humoral immunity, without needing to specify their
relative contributions. Parameter ka represents the max-
imum rate at which the late response can clear the infec-
tion, and A50 governs the magnitude of the adaptive
response required to effectively clear infected cells. We
note that the magnitude of the late immune response
has been set to be of order 1 for convenience, and this
determines the magnitude of A50.
For the vast majority of patients for whom we have

data, only samples taken after the onset of symptoms are
recorded. This means that we are unable to estimate the
duration of the incubation period, the initial dose of
virus that causes the infection, or the rate at which the
virus reproduces before being acted upon by the im-
mune response. We elect to model a five-day incubation
period and fix the rate of exponential growth to be the
same for all patients, setting β = 0.8 ml day−1virion−1,
γ = 13day−1, p = 80day−1, with these values informed by
parameter values chosen in published models [27, 28,
30]. This is a simplification: it is unclear whether, in
reality, the time from infection to symptom onset varies
by age, sex or disease severity. For each patient, the in-
fection starts at day − 5 (in the dataset, day 0 is the day
of symptom onset, not the day of infection onset) with
initial conditions given by (I = 0, V =V0,A1 = 0, A2 = 0,
A3 = 0) i.e. the infection starts with an initial viral dose,
no infected cells, and no prior exposure to the virus (late
immune response completely inactive).
The initial viral dose, V i

0 , for each patient is chosen
with the idea in mind that the viral load should peak at
or close to the time of symptom onset. Ideally, V i

0 ,
should be fitted simultaneously with the free parameters
for each patient, but this has proved challenging to date,
especially given that peak viral load should coincide ap-
proximately with symptom onset but may also not be
observed. Briefly, V i

0, is chosen by considering the linear
subsystem of equations that govern the growth of the
virus prior to the activation of the immune response to
the infection. As this system of equations is linear, it can
be solved exactly (we use a matrix exponential). We
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require that V i
0 be chosen so that, just prior to the onset

of symptoms, an uncontrolled infection would reach the
maximum viral load observed for patient i in the
dataset. This ensures that the peak viral load mod-
elled for each patient is controlled by the early-stage
immune response, as it is too soon for the adaptive
response to be effective at clearing infected cells.
When fitting to the data, we allowed the values of ka

and Imax to vary and we fixed all the other parameters.
As we did for the regression modelling, we included ran-
dom effects in the model, to account for different behav-
iour in different patients and across different studies. In
the case where we have P patients taken from S studies,
we write:

ka ¼ k0a þ kpa½i� þ ksa½ j�
kpa½i�∼Nð0; σkpÞ i ¼ ð1; 2;…; PÞ
ksa½ j�∼Nð0; σksÞ i ¼ ð1; 2;…; SÞ
Imax ¼ I0max þ Ipmax½i� þ Ismax½ j�

Ipmax½i�∼Nð0; σ IpÞ i ¼ ð1; 2;…; PÞ
Ismax½ j�∼Nð0; σ IsÞ j ¼ ð1; 2;…; SÞ

ð7Þ

This means that k0a and I0max represents the
population-level average value of each parameter. The
system of equations was solved numerically in R,
using the dopri function from the dde package [67].
We show how this numerical solution can be ob-
tained in the code repository that accompanies this
article (see the section ‘Availability of Code’). We
write the modelled viral load trajectory at time t for
patient i in study j as Vij(t). Samples from the poster-
ior distribution of the fitted parameter were obtained
using Markov Chain Monte Carlo methods, via the R
package drjacoby [68]. As with the regression model-
ling, the form of the likelihood for each data point
depends on whether the sample is above the study-
specific LOD or is recorded as being virus-negative.
We write Dijk to indicate the kth viral load sample,
taken tk after the onset of symptoms, from patient i
in study j. The likelihood for each data point has the
form:

V > 0 : L ¼ N log10 Dijk
� �

log10V ij tkð Þ; σ

� �
V ¼ 0 : L ¼ NCDF log10LOD log10V ij tkð Þ; σ

� � ð8Þ

The global likelihood was then obtained by multiplying
together the likelihoods for each data point. We pro-
vided weakly informative prior distributions for the pa-
rameters to be fitted. These were chosen to guide the
fitting process, rather than being reflective of informa-
tion gleaned from other studies. These distributions
were:

k0a∼Nð6:8; 1:5Þ
I0max∼Nð18; 2:0Þ
σkp∼LNð0:2; 0:7Þ
σks∼LNð0:2; 0:7Þ
σ Ip∼LNð0:2; 0:7Þ
σ Is∼LNð0:2; 0:7Þ
σ∼Expð0:8Þ:

ð9Þ

Supplementary Fig. 7 shows the model output ob-
tained for both the prior and posterior distributions.
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Additional file 1: Supplementary Table S1. Summary of studies
which were identified during the literature search but did not provide
viral load data when the corresponding authors were contacted. Studies
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in years. *For some studies, particularly those carried out early in the
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informed by the study authors that quantitative viral load was not
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Table S2. Summary of antiviral and immunomodulatory treatment in the
studies included in analysis. Supplementary Table S3. Summary of the
population-level (i.e. not study- or patient-specific) parameter values (and
95% credible intervals) obtained for the multi-level regression modelling
(as displayed in Fig. 2). Patient- and study-specific random effects were
used for both the peak (log-transformed) viral load, and its rate of decline
per day. Supplementary Table S4. assessing the goodness of fit of the
regression models using leave-one-out cross-validation. Supplementary
Table S5. Summary of the population-level (i.e. not study- or patient-
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mechanistic viral load model (Eqs. 6–8). Samples from ka0 and Imax0
were used to generate the black line and dark grey shaded area in Fig. 4.
Supplementary Figure S1. Standard curves relating cycle-threshold (Ct)
values to viral load. Seven standard curves, identified from published
studies (see Methods) are plotted. Supplementary Figure S2. Summary
of all the data collected (see Table 1 in the main text). For the studies
shown in blue, viral loads have been estimated using an averaged stand-
ard curve (see Methods for details). Supplementary Figure S3 Compari-
son of timing of first sample and viral load by severity. Supplementary
Figure S4. Estimations of the statistical power in the regression analyses.
Supplementary Figure S5. Relationship between patient-specific pa-
rameters governing the immune response in the mechanistic model and
disease severity. Supplementary Figure S6. Posterior means and 95%
credible intervals for the study-specific offsets in the mechanistic model.
Supplementary Figure S7. A comparison of the prior and posterior dis-
tributions for the early and late immune responses in the mechanistic
model. Supplementary Figure S8. (shown over the following 7 pages):
Output from the mechanistic model alongside the data, for all 155 pa-
tients considered. In the heading of each panel, the first number indi-
cates the study (studies numbered as in Table 1).
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