4,814 research outputs found
Constructing and exploring wells of energy landscapes
Landscape paradigm is ubiquitous in physics and other natural sciences, but
it has to be supplemented with both quantitative and qualitatively meaningful
tools for analyzing the topography of a given landscape. We here consider
dynamic explorations of the relief and introduce as basic topographic features
``wells of duration and altitude ''. We determine an intrinsic
exploration mechanism governing the evolutions from an initial state in the
well up to its rim in a prescribed time, whose finite-difference approximations
on finite grids yield a constructive algorithm for determining the wells. Our
main results are thus (i) a quantitative characterization of landscape
topography rooted in a dynamic exploration of the landscape, (ii) an
alternative to stochastic gradient dynamics for performing such an exploration,
(iii) a constructive access to the wells and (iv) the determination of some
bare dynamic features inherent to the landscape. The mathematical tools used
here are not familiar in physics: They come from set-valued analysis
(differential calculus of set-valued maps and differential inclusions) and
viability theory (capture basins of targets under evolutionary systems) which
have been developed during the last two decades; we therefore propose a minimal
appendix exposing them at the end of this paper to bridge the possible gap.Comment: 28 pages, submitted to J. Math. Phys -
Fixed points of dynamic processes of set-valued F-contractions and application to functional equations
The article is a continuation of the investigations concerning F-contractions which have been recently introduced in [Wardowski in Fixed Point Theory Appl. 2012:94,2012]. The authors extend the concept of F-contractive mappings to the case of nonlinear F-contractions and prove a fixed point theorem via the dynamic processes. The paper includes a non-trivial example which shows the motivation for such investigations. The work is summarized by the application of the introduced nonlinear F-contractions to functional equations
Research of metal solidification in zero-g state
An experiment test apparatus that allows metal melting and resolidification in the three seconds available during free fall in a drop tower was built and tested in the tower. Droplets (approximately 0.05 cm) of pure nickel and 1090 steel were prepared in this fashion. The apparatus, including instrumentation, is described. As part of the instrumentation, a method for measuring temperature-time histories of the free floating metal droplets was developed. Finally, a metallurgical analysis of the specimens prepared in the apparatus is presented
Leptonic decay constants f_Ds and f_D in three flavor lattice QCD
We determine the leptonic decay constants in three flavor unquenched lattice
QCD. We use O(a^2)-improved staggered light quarks and O(a)-improved charm
quarks in the Fermilab heavy quark formalism. Our preliminary results, based
upon an analysis at a single lattice spacing, are f_Ds = 263(+5-9)(+/-24) MeV
and f_D = 225(+11-13)(+/-21) MeV. In each case, the first reported error is
statistical while the is the combined systematic uncertainty.Comment: Talk presented at Lattice2004(heavy), Fermilab, June 21-26, 2004. 3
pages, 2 figure
Lattice Gauge Fixing as Quenching and the Violation of Spectral Positivity
Lattice Landau gauge and other related lattice gauge fixing schemes are known
to violate spectral positivity. The most direct sign of the violation is the
rise of the effective mass as a function of distance. The origin of this
phenomenon lies in the quenched character of the auxiliary field used to
implement lattice gauge fixing, and is similar to quenched QCD in this respect.
This is best studied using the PJLZ formalism, leading to a class of covariant
gauges similar to the one-parameter class of covariant gauges commonly used in
continuum gauge theories. Soluble models are used to illustrate the origin of
the violation of spectral positivity. The phase diagram of the lattice theory,
as a function of the gauge coupling and the gauge-fixing parameter
, is similar to that of the unquenched theory, a Higgs model of a type
first studied by Fradkin and Shenker. The gluon propagator is interpreted as
yielding bound states in the confined phase, and a mixture of fundamental
particles in the Higgs phase, but lattice simulation shows the two phases are
connected. Gauge field propagators from the simulation of an SU(2) lattice
gauge theory on a lattice are well described by a quenched mass-mixing
model. The mass of the lightest state, which we interpret as the gluon mass,
appears to be independent of for sufficiently large .Comment: 28 pages, 14 figures, RevTeX
Recommended from our members
Dissociating visuo-spatial and verbal working memory: It’s all in the features
Echoing many of the themes of the seminal work of Atkinson and Shiffrin (1968), this paper uses the Feature Model (Nairne, 1988, 1990; Neath & Nairne, 1995) to account for performance in working memory tasks. The Brooks verbal and visuo-spatial matrix tasks were performed alone, with articulatory suppression, or with a spatial suppression task; the results produced the expected dissociation. We used Approximate Bayesian Computation techniques to fit the Feature Model to the data and showed that the similarity-based interference process implemented in the model accounted for the data patterns well. We then fit the model to data from Guérard and Tremblay (2008); the latter study produced a double dissociation while calling upon more typical order reconstruction tasks. Again, the model performed well. The findings show that a double dissociation can be modelled without appealing to separate systems for verbal and visuo-spatial processing. The latter findings are significant as the Feature Model had not been used to model this type of dissociation before; importantly, this is also the first time the model is quantitatively fit to data. For the demonstration provided here, modularity was unnecessary if two assumptions were made: (1) the main difference between spatial and verbal working memory tasks is the features that are encoded; (2) secondary tasks selectively interfere with primary tasks to the extent that both tasks involve similar features. It is argued that a feature-based view is more parsimonious (see Morey, 2018) and offers flexibility in accounting for multiple benchmark effects in the field
The Omega- and the strange quark mass
Omega- correlators have been calculated on the MILC collaboration's archive
of three flavor improved staggered quark lattices. The Omega- is stable under
strong interactions (140 MeV below threshold). It provides a valuable
consistency check on a combination of strange quark mass and lattice scale
determination from other quantities. Alternatively, the Omega- mass could be
used to fix the strange quark mass, which gives a check on computations of the
strange quark mass based on the kaon mass.Comment: Three pages, proceedings of the Lattice-04 symposium. (Corrected
typographical errors
Light hadrons with improved staggered quarks: approaching the continuum limit
We have extended our program of QCD simulations with an improved
Kogut-Susskind quark action to a smaller lattice spacing, approximately 0.09
fm. Also, the simulations with a approximately 0.12 fm have been extended to
smaller quark masses. In this paper we describe the new simulations and
computations of the static quark potential and light hadron spectrum. These
results give information about the remaining dependences on the lattice
spacing. We examine the dependence of computed quantities on the spatial size
of the lattice, on the numerical precision in the computations, and on the step
size used in the numerical integrations. We examine the effects of
autocorrelations in "simulation time" on the potential and spectrum. We see
effects of decays, or coupling to two-meson states, in the 0++, 1+, and 0-
meson propagators, and we make a preliminary mass computation for a radially
excited 0- meson.Comment: 43 pages, 16 figure
Learning in a Belgian Hospital: Conditions of biomedical innovation in the Sector of Health Sciences at the Université catholique de Louvain.
__INTRODUCTION __
This report is part of “Medlearn”. Medlearn is a research project coordinated by
Prof. E. MONTPETIT (Université de Montréal, Canada), in collaboration with Prof. D. AUBIN
(Université catholique de Louvain, Belgium) and Prof. M. ATKINSON (University of
Saskatchewan, Canada). Academic Medical Centers (AMCs) are often at the center of
biomedical innovation. The objective of this research project is to better understand the
conditions of biomedical innovation within AMCs, that is the capacity of diversified actors to
work together behind biomedical research. An AMC is composed of a hospital and a faculty of
medicine, both depending of an university. For this reason, an AMC has three missions: It
provides not only health care services, but also education and research in the field of
biomedicine.
To meet its objective, Medlearn is composed of two steps. The first step is devoted to
qualitative case studies of three AMCs, respectively located in North-America, Europe, and Asia.
They aim at familiarising the researchers with the nature of biomedical innovation and with the
actor networks who support it in such organizations. The second step of Medlearn consists in a
quantitative study of a more extended number of AMCs on the same three continents. It aims
at testing the competing hypotheses retrieved from theories and on the basis of the case
studies
- …