385 research outputs found

    Quantum feedback and adaptive measurements

    Get PDF
    Summary form only given. Although real-time feedback of measured signals is an essential component of sensing and control in classical settings, models for quantum feedback that are rigorous yet useful have only become possible since the advent of measurement-based quantum trajectory theory. The quantum feedback scenario introduces new concerns of coherence and measurement backaction, but recent work has shown that these can be treated properly in a formal integration of quantum trajectory theory with standard state-space formulations of filtering and control theory. Pioneering studies by H. M. Wiseman have shown that such models can be used to design and to analyze realistic schemes for adaptive homodyne measurement and for feedback control of atomic motion. Much of the ongoing research in our group focuses on the experimental implementation of such schemes. For a broad range of quantum feedback scenarios, certain recurring technical issues arise out of the need to perform complex, high-bandwidth processing of measured signals. We are developing a "rapid-prototyping" approach to refining signal processing and feedback algorithms via quantum trajectory simulation on a PC, followed by translation of the algorithms into hardware Description language (HDL)

    Fast Procedure for Characterization of Voltage Sag for Medium Voltage (MV) Distribution Network without Online Monitoring Using Fault and Regression Analyses

    Get PDF
    Power Quality (PQ) Management undertaken by most utilities including TNB involves monitoring/online measurement, data processing & analysis, reporting and customers’ complaints management. The Malaysian regulator requires proactive communication and PQ disturbance report covering specific details such as percentage remaining voltage, duration, and cause of voltage sag/dip events to be shared with affected customers. The above stipulated requirement can be easily met for substations/exposed areas with online PQ measurements, which capture voltage magnitude and duration that could be corroborated with tripping events. However, it is not practical to have online monitoring facilities as the majority of medium voltage (MV) substations are not equipped with voltage and current transformers where measurements could be tapped. Current procedures of characterizing voltage sag for substations without measurements facilities is time consuming. In this paper, a fast procedure using combinations of fault simulations and regression analysis to characterize voltage sag is proposed. Extensive results from 160 simulation cases comprising 4 network operating configurations, 20 fault distances, and 2 fault types are used in the regression formulation.  The results based on the proposed fast procedure for MV distribution network without online monitoring is found to be fairly accurate

    A methodology for technical losses estimation of radial distribution feeder

    Get PDF
    Power distribution feeders is one of the key contributors of technical losses (TL) as it is typically large in numbers and scattered over large geographic areas. Traditional approach using classical formulation or time series load flow simulations to determine TL in each and every feeder and feeder sections in all distribution network require is an expensive exercise as it requires extensive modelling of the feeders and voluminous data. This paper presents a simple analytical approach to estimate monthly TL of a radial distribution feeder using analytical approach. TL for each feeder sections are evaluated on a monthly basis based on estimation of the load profile of the load points, peak power loss characteristics and loss factor. Total feeder TL are then estimated as the sum of all TL contributed by each feeder section. The developed models and procedure have been demonstrated through case studies performed on three (3) typical and representative feeders characterized by the different area served, number of feeder sections, load distribution and feeder length. The results shows close agreement (less than 5% differences) when compared with time series load flow simulations. With this model, the approach could be extended and applied to estimate TL of any radial distribution feeders of different configurations and characteristic

    Design Of Battery Storage System For Malaysia Low Voltage Distribution Network With The Presence Of Residential Solar Photovoltaic System

    Get PDF
    The recent proliferation of residential solar photovoltaic systems has prompted several technical challenges to the operation of low voltage (LV) distribution networks. More specifically, the mismatch of the solar generation and demand profiles, particularly during the midday when the demand is low and solar generation is high, can lead to network overvoltages and increased network losses. In addition, the solar photovoltaic system is not able to reduce the system’s maximum demand, given the residential LV network would normally have an evening peak when the sun goes down. In this regard, this paper examines two different control strategies in designing the battery energy storage system. One aims to eliminate reverse flow caused by the surplus solar energy and the other aims for peak demand reductio

    In memoriam two distinguished participants of the Bregenz Symmetries in Science Symposia: Marcos Moshinsky and Yurii Fedorovich Smirnov

    Full text link
    Some particular facets of the numerous works by Marcos Moshinsky and Yurii Fedorovich Smirnov are presented in these notes. The accent is put on some of the common interests of Yurii and Marcos in physics, theoretical chemistry, and mathematical physics. These notes also contain some more personal memories of Yurii Smirnov.Comment: Submitted for publication in Journal of Physics: Conference Serie

    Investigation on shape deviation of horizontal interior circular channels fabricated by laser powder bed fusion

    Get PDF
    The fabrication of horizontal interior circular channels poses some unique challenges to the laser powder bed fusion (L-PBF) process. The engineering challenge is to be able to print horizontal interior channels using L-PBF without using support structures, while the scientific challenge is to predict the shape deviation in the horizontal channel. This paper studies the geometric fidelity (roundness and shape deviation) of L-PBF printed horizontal interior circular channels (diameters 1−3 mm) by developing experiment-based regression models and a preliminary computational fluid dynamics (CFD) simulation model. The roundness error is found to be affected by the shape/size of the melt pool, thermal stresses, beam offset, and the slicing algorithm. It is recommended that to decrease the roundness error, in addition to choosing a proper beam offset, the width/depth of the melt pool should be minimized by minimizing the volumetric energy density (smaller laser power or higher scanning speed). Shape deviation in overhanging structures is determined by the thermo-mechanical driven molten flow in the melt pool. Hanging structures with irregular profiles (dross) are formed due to the sinking of the melt pool on an unconsolidated powder bed under the effect of gravity, surface tension, and poor thermal conductivity. (Partially) unmelted powder randomly adheres to the edges of the melt pool enlarging the hanging structure and roughening the profile. Small laser power or large scanning speed benefits reducing the roundness error and hang-diameter ratio. 0° or 45° rotational linear scanning strategy can be selected for minimizing the roundness error or the hang-diameter ratio, respectively

    Sum Rules for Multi-Photon Spectroscopy of Ions in Finite Symmetry

    Get PDF
    Models describing one- and two-photon transitions for ions in crystalline environments are unified and extended to the case of parity-allowed and parity- forbidden p-photon transitions. The number of independent parameters for characterizing the polarization dependence is shown to depend on an ensemble of properties and rules which combine symmetry considerations and physical models.Comment: 16 pages, Tex fil

    Exact Ampitude Ratio and Finite-Size Corrections for the M x N Square Lattice Ising Model The :

    Full text link
    Let f, U and C represent, respectively, the free energy, the internal energy and the specific heat of the critical Ising model on the square M x N lattice with periodic boundary conditions. We find that N f and U are well-defined odd function of 1/N. We also find that ratios of subdominant (N^(-2 i - 1)) finite-size corrections amplitudes for the internal energy and the specific heat are constant. The free energy and the internal energy at the critical point are calculated asymtotically up to N^(-5) order, and the specific heat up to N^(-3) order.Comment: 18 pages, 4 figures, to be published in Phys. Rev. E 65, 1 February 200

    Bone-targeting agents in major solid tumour metastases: a multinational cohort study

    Get PDF
    OBJECTIVE: To describe the epidemiology, clinical characteristics and utilisation patterns of bone-targeting agents (BTAs) in patients with bone metastases from breast, prostate and lung cancer. METHODS: This is a multinational retrospective cohort study including patients with three major solid tumours (breast, prostate and lung cancer) and newly initiated on BTAs (ie, denosumab, zoledronic acid and pamidronate). Records were retrieved from nationwide health databases from Hong Kong and Taiwan (HK and TW: 2013–2017) and Korea (KR: 2012–2016). Descriptive analyses included the annual incidence rates of bone metastases and the cumulative incidence curves of BTA initiation. We used Sankey diagrams to visualise the dynamic BTA utilisation patterns. RESULTS: The annual incidence rate of bone metastases ranged from 3.5% to 4.5% in TW, from 9.6% to 10.3% in HK and from 2.9% to 3.8% in KR. We identified 14.1% (5127), 9.3% (883) and 9.4% (4800) of patients with bone metastases newly initiated on BTAs in TW, HK and KR, respectively. The most frequently used BTA in TW (67.1%) and HK (51.9%) was denosumab, while in KR (84.8%) it was zoledronic acid. Sankey diagrams indicated the proportion of patients remaining on denosumab was highest in TW and HK, while it was zoledronic acid in KR. Specifically, in TW, patients who were on bisphosphonates or had discontinued treatment frequently switched to or reinitiated denosumab. CONCLUSIONS: We found the rate of BTA utilisation remained low across all sites and tumour types in recent years. The dynamic utilisation patterns of BTAs provide better understanding of the treatment landscape for future evaluation of associated outcomes of patients
    corecore