917 research outputs found

    Multiaxial Kitagawa analysis of A356-T6

    Full text link
    Experimental Kitagawa analysis has been performed on A356-T6 containing natural and artificial defects. Results are obtained with a load ratio of R = -1 for three different loadings: tension, torsion and combined tension-torsion. The critical defect size determined is 400 \pm 100 \mum in A356-T6 under multiaxial loading. Below this value, the microstructure governs the endurance limit mainly through Secondary Dendrite Arm Spacing (SDAS). Four theoretical approaches are used to simulate the endurance limit characterized by a Kitagawa relationship are compared: Murakami relationships [Y Murakami, Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, Elsevier, 2002.], defect-crack equivalency via Linear Elastic Fracture Mechanics (LEFM), the Critical Distance Method (CDM) proposed by Susmel and Taylor [L. Susmel, D. Taylor. Eng. Fract. Mech. 75 (2008) 15.] and the gradient approach proposed by Nadot [Y. Nadot, T. ~Billaudeau. Eng. Fract. Mech. 73 (2006) 1.]. It is shown that the CDM and gradient methods are accurate; however fatigue data for three loading conditions is necessary to allow accurate identification of an endurance limit.Comment: 27 pages, 11 figure

    The usefulness of c-Kit in the immunohistochemical assessment of melanocytic lesions

    Get PDF
    C-Kit (CD117), the receptor for the stem cell factor, a growth factor for melanocyte migra- tion and proliferation, has shown differential immunostaining in various benign and malig- nant melanocytic lesions. The purpose of this study is to compare c-Kit immunostaining in benign nevi and in primary and metastatic malignant melanomas, to determine whether c-Kit can aid in the differential diagnosis of these lesions. c-Kit immunostaining was per- formed in 60 cases of pigmented lesions, including 39 benign nevi (5 blue nevi, 5 intra- dermal nevi, 3 junctional nevi, 15 cases of pri- mary compound nevus, 11 cases of Spitz nevus), 18 cases of primary malignant melanoma and 3 cases of metastatic melanoma. The vast majority of nevi and melanomas examined in this study were posi- tive for c-Kit, with minimal differences between benign and malignant lesions. C-Kit cytoplasmatic immunoreactivity in the intraepidermal proliferating nevus cells, was detected in benign pigmented lesions as well as in malignant melanoma, increasing with the age of patients (P=0.007) in both groups. The patient’s age at presentation appeared to be the variable able to cluster benign and malignant pigmented lesions. The percentage of c-Kit positive intraepidermal nevus cells was better associated with age despite other vari- ables (P=0.014). The intensity and percentage of c-Kit positivity in the proliferating nevus cells in the dermis was significantly increased in malignant melanocytic lesions (P=0.015 and P=0.008) compared to benign lesions (compound melanocytic nevi, Spitz nevi, intradermal nevi, blue nevi). Immunostaning for c-Kit in metastatic melanomas was nega- tive. Interestingly in two cases of melanoma occurring on a pre-existent nevus, the melanoma tumor cells showed strong cytoplas- matic and membranous positivity for c-kit, in contrast with the absence of any immunoreac- tivity in pre-existent intradermal nevus cells. C-Kit does not appear to be a strong immuno- histochemical marker for distinguishing melanoma from melanocytic nevi, if we consid- er c-Kit expression in intraepidermal prolifer- ating cells. The c-Kit expression in proliferat- ing melanocytes in the dermis could help in the differential diagnosis between a superfi- cial spreading melanoma (with dermis inva- sion) and a compound nevus or an intradermal nevus. Finally, c-Kit could be a good diagnostic tool for distinguishing benign compound nevi from malignant melanocytic lesions with der- mis invasion and to differentiate metastatic melanoma from primary melanoma

    Checking and Enforcing Security through Opacity in Healthcare Applications

    Full text link
    The Internet of Things (IoT) is a paradigm that can tremendously revolutionize health care thus benefiting both hospitals, doctors and patients. In this context, protecting the IoT in health care against interference, including service attacks and malwares, is challenging. Opacity is a confidentiality property capturing a system's ability to keep a subset of its behavior hidden from passive observers. In this work, we seek to introduce an IoT-based heart attack detection system, that could be life-saving for patients without risking their need for privacy through the verification and enforcement of opacity. Our main contributions are the use of a tool to verify opacity in three of its forms, so as to detect privacy leaks in our system. Furthermore, we develop an efficient, Symbolic Observation Graph (SOG)-based algorithm for enforcing opacity

    Coherent structures in turbulent boundary layers over an airfoil

    Get PDF
    This preliminary study is concerned with the identification of three-dimensional coherent structures, defined as intense Reynolds-stress events, in the turbulent boundary layer developing over the suction side of a NACA4412 airfoil at a Reynolds number based on the chord lenght and the incoming velocity of Rec = 200, 000. The scientific interest for such flows originates from the non-uniform adverse pressure gradient that affects the boundary-layer development. Firstly, we assess different methods to identify the turbulent-non-turbulent interface, in order to exclude the irrotational region from the analysis. Secondly, we evaluate the contribution of the considered coherent structures to the enhanced wall-normal velocity, characteristic of adverse pressure gradients. Our results show that it is necessary to limit the detection of coherent structures to the turbulent region of the domain, and that the structures reveal qualitative differences between the contributions of intense events to the wall-normal velocity in adverse-pressure-gradient and zero-pressure-gradient turbulent boundary layers

    Contribution of Reynolds-stress structures to the secondary flow in turbulent ducts

    Get PDF
    The present work is aimed at evaluating the contribution to the secondary flow in duct flow with square and rectangular cross section from three-dimensional coherent structures, defined as intense Reynolds-stress events. The contribution to a certain mean quantity is defined as the ensemble average over the detected coherent structures, weighted with their own occupied volume fraction. Our analysis unveils that the contribution to the cross-stream components of the mean velocity is either very similar to the same contribution in channel flow, or almost negligible in respect to the contribution from the portion of the domain not occupied by coherent structures. These results suggest that the most intense events are not directly responsible for the secondary flow

    Characterization of turbulent coherent structures in square duct flow

    Get PDF
    This work is aimed at a first characterization of coherent structures in turbulent square duct flows. Coherent structures are defined as connected components in the domain identified as places where a quantity of interest (such as Reynolds stress or vorticity) is larger than a prescribed non-uniform threshold. Firstly, we qualitatively discuss how a percolation analysis can be used to assess the effectiveness of the threshold function, and how it can be affected by statistical uncertainty. Secondly, various physical quantities that are expected to play an important role in the dynamics of the secondary flow of Prandtl's second kind are studied. Furthermore, a characterization of intense Reynolds-stress events in square duct flow, together with a comparison of their shape for analogous events in channel flow at the same Reynolds number, is presented

    TAN: A Distributed Algorithm for Dynamic Task Assignment in WSNs

    Get PDF
    We consider the scenario of wireless sensor networks where a given application has to be deployed and each application task has to be assigned to each node in the best possible way. Approaches where decisions on task execution are taken by a single central node can avoid the exchange of data packets between task execution nodes but cannot adapt to dynamic network conditions, and suffer from computational complexity. To address this issue, in this paper, we propose an adaptive and decentralized task allocation negotiation algorithm (TAN) for cluster network topologies. It is based on noncooperative game theory, where neighboring nodes engage in negotiations to maximize their own utility functions to agree on which of them should execute single application tasks. Performance is evaluated in a city scenario, where the urban streets are equipped with different sensors and the application target is the detection of the fastest way to reach a destination, and in random WSN scenarios. Comparisons are made with three other algorithms: 1) baseline setting with no task assignment to multiple nodes; 2) centralized task assignment lifetime optimization; and 3) a dynamic distributed algorithm, DLMA. The result is that TAN outperforms these algorithms in terms of application completion time and average energy consumption. Published in

    Intense reynolds-stress events in turbulent ducts

    Get PDF
    The aim of the present work is to investigate the role of intense Reynolds shear-stress events in the generation of the secondary flow in turbulent ducts. We consider the connected regions of flow where the product of the instantaneous fluctuations of two velocity components is higher than a threshold based on the long-time turbulence statistics, in the spirit of the three-dimensional quadrant analysis proposed by Lozano-Durán et al. (J. Fluid Mech., vol. 694, 2012, pp. 100–130). We examine both the geometrical properties of these structures and their contribution to the mean in-plane velocity components, and we perfom a comparison with turbulent channel flow at similar Reynolds number. The contribution to a certain mean quantity is defined as the ensemble average over the detected coherent structures, weighted with their own occupied volume fraction. In the core region of the duct, the contribution of intense events to the wall-normal component of the mean velocity is in very good agreement with that in the channel, despite the presence of the secondary flow in the former. Additionally, the shapes of the three-dimensional objects do not differ significantly in both flows. In the corner region of the duct, the proximity of the walls affects both the geometrical properties of the coherent structures and the contribution to the mean component of the vertical velocity. However, such contribution is less relevant than that of the complementary portion of the flow not included in such objects. Our results show that strong Reynolds shear-stress events are affected by the presence of a corner but, despite the important role of these structures in the dynamics of wall-bounded turbulent flows, their contribution to the secondary flow is relatively low, both in the core and in the corner
    • …
    corecore