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A B S T R A C T   

The aim of the present work is to investigate the role of intense Reynolds shear-stress events in the generation of 
the secondary flow in turbulent ducts. We consider the connected regions of flow where the product of the 
instantaneous fluctuations of two velocity components is higher than a threshold based on the long-time tur
bulence statistics, in the spirit of the three-dimensional quadrant analysis proposed by Lozano-Durán et al. 
(J. Fluid Mech., vol. 694, 2012, pp. 100–130). We examine both the geometrical properties of these structures and 
their contribution to the mean in-plane velocity components, and we perfom a comparison with turbulent 
channel flow at similar Reynolds number. The contribution to a certain mean quantity is defined as the ensemble 
average over the detected coherent structures, weighted with their own occupied volume fraction. In the core 
region of the duct, the contribution of intense events to the wall-normal component of the mean velocity is in 
very good agreement with that in the channel, despite the presence of the secondary flow in the former. 
Additionally, the shapes of the three-dimensional objects do not differ significantly in both flows. In the corner 
region of the duct, the proximity of the walls affects both the geometrical properties of the coherent structures 
and the contribution to the mean component of the vertical velocity. However, such contribution is less relevant 
than that of the complementary portion of the flow not included in such objects. Our results show that strong 
Reynolds shear-stress events are affected by the presence of a corner but, despite the important role of these 
structures in the dynamics of wall-bounded turbulent flows, their contribution to the secondary flow is relatively 
low, both in the core and in the corner.   

1. Introduction 

Turbulent flows through ducts with square and rectangular cross- 
sections exhibit secondary flow of Prandtl’s second kind (Prandtl, 
1926), which consists of non-vanishing values of the mean cross-stream 
velocity components. The secondary flows of first and second kinds 
differ as to the latter is only present in turbulent flows and it typically 
has a lower intensity, which amounts to few percentage points of the 
stream-wise mean velocity. This phenomenon has a multiscale nature, 
which is apparent in its scaling properties. In fact, in the square duct, the 
mean cross-stream velocity components in the proximity of the corner 
collapse for different Reynolds numbers if the velocity is expressed in 
outer units and the distance from the wall in inner units. However, in the 
proximity of the centre, the velocity profiles collapse when velocity and 
wall-distance are expressed in outer units (Gavrilakis, 1992; Pirozzoli 
et al., 2018). In rectangular ducts, the asymmetric development of the 
boundary layers attached to sides of different lengths leads to a more 

complex scenario, and the scaling of the near-corner pattern is not 
obvious (Vinuesa et al., 2018). 

Several studies have investigated the origin of the secondary flow of 
Prandtl’s second kind. Einstein and Li (1958) applied the Reynolds 
decomposition to the equation of the mean stream-wise vorticity. They 
pointed out that the presence of the secondary flow is connected to the 
in-plane derivatives of the Reynolds-stress terms that only include the 
cross-stream velocity components. Huser and Biringen (1993) per
formed direct numerical simulations (DNS) at average friction Reynolds 
numbers up to Re*

τ = 300, defined as Re*
τ = hu*

τ/h, where h is the half 
height of the duct, ν is the kinematic viscosity and u*

τ the friction velocity 
computed using the streamwise pressure gradient dP/dx, i.e. u*

τ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− (h/2)(dP/dx)

√
and employed a generalized quadrant analysis to 

quantify the contribution of intense Reynolds-stress events to the 
Reynolds-stress components (Wallace et al., 1972; Willmarth and Lu, 
1972). They stated that “the mean secondary flow […] can be explained 
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by the preferred location of an ejection structure near the corner and the 
interaction between bursts from the two intersecting walls”. Pinelli et al. 
(2010) performed DNS for several Reynolds numbers in the range of 
Re*

τ = 80 − 225 to investigate the relation between secondary flow and 
near-wall structures. They observed that the presence of two perpen
dicular walls determines a preferential location of a high-speed streak at 
a distance of 50+ from the corner, unveiling a connection between 
buffer-layers structures and the scaling properties of the mean stream
wise vorticity. Note that the superscript (⋯)

+ denotes here viscous units 
defined via the viscous length l* = ν/u*

τ . More recently, Modesti et al. 
(2018), using data at Reynolds numbers up to Re*

τ = 1,000, employed a 
generalized form of the FIK identity (Fukagata et al., 2002) to study the 
role of the secondary flow and performed a numerical experiment, 
consisting of the artificial suppression of the secondary flow. They 
confirmed the intuitive hypothesis that the role of the secondary flow is 
to compensate for the momentum deficit in the proximity of the corner, 
and they observed that suppressing the secondary flow actually results 
in a poorer agreement with the canonical log law of the velocity profiles. 
Lastly, Gavrilakis (2019) performed DNS in the range Re*

τ = 157 − 861, 
carefully assessing the Reynolds number dependence of the secondary 
flow. He pointed out that the secondary flow is not fully developed up to 
Re*

τ ≈ 300. Furthermore, because of the presence of an inflectional point 
in the mean streamwise velocity, he observed that an instability mech
anism plays a role in generating vortices in the corner region of the duct. 

The present paper aims at characterising coherent structures in tur
bulent flows through duct with square and rectangular cross-section at 
two different Reynolds numbers, namely Reτ = 180 and Reτ = 360. 
Note that Reτ = huτ/ν, where uτ =

̅̅̅̅̅̅̅̅̅̅
τw/ρ

√
is computed using the wall- 

shear stress at the centre-plane, τw, and fluid density, ρ. The duct data- 
set is part of that presented by Vinuesa et al. (2018), who performed 
DNSs of rectangular ducts with aspect ratio in the range AR  = 1–14. We 

defined the structures as intense Reynolds-stress events in the spirit of 
the quadrant analysis, following the same procedure already employed 
by Lozano-Durán et al. (2012) in the study of turbulent channel flow. We 
focus on the geometrical properties of the structures and on their frac
tional contributions to the mean velocity profiles, to provide additional 
information on the effects of the perpendicular walls on turbulence and 
the relation between these structures and the secondary flow. 

The paper is organised as follows: in Section 2 we describe the nu
merical simulation, the properties of the mean fields and the structure- 
identification technique; in Sections 3 and 4 we examine the geometrical 
properties and the fractional contribution to the secondary flow of the 
structures, respectively; finally, in Section 5 we present our conclusions. 

2. Methodology 

In this section, we describe the data-set examined in the present 
work, we summarize the properties of the mean flow in square and 
rectangular duct, and we present the structure-detection procedure. 

2.1. Numerical database 

In this study, we consider turbulent flows through a square duct and 
a rectangular duct with an aspect ratio AR = 3 (defined as AR = la/lb, 
where la and lb are the lengths of the horizontal and the vertical sides, 
respectively), and friction Reynolds numbers at the centre-plane of 
Reτ = 180 and 360. We employed an additional data-set of turbulent 
channel flow at same Reτ for comparison. For both channel and duct, we 
employ a reference system where x, y and z correspond to the stream
wise, vertical and spanwise directions, respectively. The three compo
nents of the instantaneous velocity in these directions are u, v and w, 
while their mean values are U,V and W. 

The simulations were carried out using the numerical code Nek5000 

Fig. 1. (Top) Vertical mean velocity component, V, for half of the domain in (from left to right) square duct at Reτ = 180, square duct at Reτ = 360 and rectangular 
duct with aspect ratio 3 at Reτ = 180. (Bottom) Spanwise mean velocity component, W, for half of the domain in rectangular duct at (left) Reτ = 180 and (right) 
Reτ = 360. Local maxima and local minima are indicated with upward and downward triangles, respectively. 
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developed by Fisher et al. (2008). In these simulations, the domain is 
divided into “spectral elements”, and the solution is expressed in terms 
of a nodal base of Legendre polynomials defined on 
Gauss–Lobatto–Legendre (GLL) quadrature points within each element. 
Polynomials of the 11th order are used in this case. The spatial de
rivatives of the incompressible Navier–Stokes equation are discretized 
following the PN − PN− 2 formulation by Patera (1984), while the time 
derivatives are discretized using a backward scheme for the viscous term 
and an extrapolation scheme for the non-linear terms. Both schemes for 
the time derivative are of the third order. The domain length for the duct 
simulations is 25 h. 

The channel-flow simulations are performed by integrating the 
incompressible Navier–Stokes equations in the form of evolution equa
tions for the wall-normal vorticity and for the Laplacian of the wall- 
normal velocity, as in Ref. Kim et al. (1987). The spatial discretization 
is dealiased Fourier in the two wall-parallel directions and Chebychev 
polynomials in y. Time stepping is performed with the third-order semi- 
implicit Runge–Kutta as in Ref. Moser et al. (1999). Both channels have 
computational domains in the streamwise and spanwise directions large 
enough to ensure that the largest structures of the flow are reasonably 
well represented. The domain size for the channel simulations is 12πh×
2h× 4πh. 

Fig. 1 shows the mean of the vertical and spanwise components of the 
velocity, V and W respectively, for the square and the rectangular duct. 
Here the bulk velocity and the half width of the duct h are employed to 
scale the velocity components and the spatial coordinates, respectively, 

and the origin of the reference frame is located at the bottom left corner 
with respect to the main flow direction. In order to identify the region of 
the flow for which it is meaningful to compare the different cases, we 
examine in detail the Reynolds-number and geometry effects on the 
secondary flow. We focus on the position of local extrema of the mean 
cross-stream components of the velocity in the bottom-left quadrant of 
the duct. In the square duct, the coordinates of the first maximum 
(y+ ≃ 77; z+ = 11) and of the first minimum (y+ = 50; z+ = 50) of V 
scale in inner units (x, y and z are the streamwise, wall-normal and 
spanwise coordinates). The fact that the secondary flow is still evolving 
in this range of Reynolds numbers is manifested in the position of the 
second maximum of V, which does not scale either in inner or in outer 
units. Furthermore, a third maximum arises at Reτ = 360 at the centre- 
plane, which is not present at Reτ = 180. In the rectangular duct the 
secondary flow extends through the domain in the horizontal direction 
and Reynolds-number and geometry effects are clearly distinguishable, 
although the geometry has also an impact on the scaling properties of 
the secondary flow. In fact, the corner circulation is confined closer to 
the wall when the Reynolds number increases, as in the square duct, but 
the location of the extrema of V and W does not scale in inner units in the 
rectangular duct. For instance, the location of the first maximum of V is 
(y+ = 71; z+ = 11) for Reτ = 180, but (y+ = 90; z+ = 13) for Reτ =

360. In addition, in the rectangular duct V and W become qualitatively 
different. The maximum of V associated with the core circulation is 
located at a distance from the vertical wall which is larger than the width 
of the square duct and other local maxima appear while approaching the 
vertical centre-plane. However, V is positive almost always in the core 
region, and therefore the flow moves on average from the wall to the 
horizontal centre-plane. On the other hand, W in the rectangular duct 
exhibits a change of sign along the horizontal centre-plane, followed by 
a (negative) local minimum, and it approaches again 0 at the centre of 
the duct (y = 1; z = 3) from a negative value. Therefore, along the 
horizontal axis the flow moves from the wall toward the centre up to a 
certain distance from the vertical wall, but in the opposite direction at 
farther distance. Note that in the square duct V (or W) is always positive 
along the centre-plane and gradually decreases to become 0 at the centre 
(y = 1; z = 1). It is also interesting to observe that the position of the 
change of sign (y = 1; z ≃ 0.5) and of the local minimum (y =

1; z ≃ 1.1) do not depend on the Reynolds number, despite the fact that 
the evolution that W exhibits from Reτ = 180 to Reτ = 360 in the 
spanwise portion of the domain with z < 0.5 is similar to that in the 
corresponding half of the domain in the square duct. 

Since the structure analysis is performed as a post-processing step, it 
is key to examine a large enough number of flow fields to reduce the 
statistical uncertainty. In particular, turbulent ducts exhibit a slow 
convergence because of the secondary flow (Vinuesa et al., 2016; Vidal 

Table 1 
Simulation parameters for the considered cases. The resolution is indicated in 
terms of the maximum and minimum grid spacing in inner units. The bulk 
Reynolds number is defined as Reb = hUb/ν, where h is the half-height of the 
duct, Ub is the bulk velocity and ν is the kinematic viscosity. Note that “N.P.” is 
number of grid points, and “N.F.” number of fields used in the analysis.  

Case Reb  Reτ  N.P. Δx+ Δy+ Δz+ N. 
F. 

D180 2500 178 27.4⋅106  (1.98,
9.80)

(0.09,
4.74)

(0.09,
4.74)

879 

D360 5693 356 122.4⋅106  (1.99,
9.88)

(0.15,
4.77)

(0.15,
4.98)

404 

D180AR3 2581 179 61.7⋅106  (1.99,
9.86)

(0.09,
4.65)

(0.15,
4.65)

303 

D360AR3 5817 363 326.5⋅106  (2.03,
10.07)

(0.15,
4.75)

(0.15,
4.96)

624 

C180 3250 186 38.1⋅106  9.1  (0.10,
6.1)

4.5  76 

C360 6739 354 151.8⋅106  8.7  (0.05,
5.8)

4.3  37  

Fig. 2. (Left) Slice orthogonal to the streamwise di
rection for duct flow at Reτ = 180, coloured with the 
instantaneous streamwise component of the velocity. 
The black solid, dashed and dotted lines represent the 
boundaries of intense uv events sampled for Huv = 0.5,
2.0 and 4.0, respectively. (Right) Percolation diagram 
for all the cases. Blue for the channel, green for the 
square duct and red for the rectangular duct. Light 
and dark color for Reτ = 180 and Reτ = 360, respec
tively. The lines for Reτ = 360 are overlapping in the 
proximity of the percolation crisis. The vertical 
dashed line in black is Huv = 2.0. (For interpretation 
of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)   
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et al., 2017) and require hundreds of fields for the results to be mean
ingful (a convergence assessment to quantify the statistical uncertainty 
of our results is provided in the appendix). The data-set considered in the 
present study is summarized in Table 1. 

2.2. Structure identification and percolation analysis 

The coherent structures examined in the present paper are defined as 
connected regions of the domain where a specific condition is fulfilled. 
In particular, we study intense Reynolds-stress events, with the pro
cedure introduced by Lozano-Durán et al. (2012) for channel flow, who 
extended the classic quadrant analysis Wallace et al. (1972) to three 
dimensions. These authors defined as “structures” the regions of the 
domain where: 

|uv| > Huv urmsvrms. (1) 

In this expression, u and v are the fluctuations of the spanwise and 
vertical velocity components, respectively, urms and vrms are the corre
sponding root-mean-squares, and Huv is a numerical value (called “hy
perbolic hole”). In the duct, the scaling term of the threshold, urmsvrms, is 
a two-dimensional field, which has its highest values in the proximity of 
the vertical walls. 

The percolation analysis quantifies the effects of varying the 
threshold Huv (Fig. 2, right). For small values of Huv, few very large 
structures occupy most the domain, and the ratio between the proba
bility for a single grid point to belong to the largest structures (denoted 
by Pmax), and the probability of belonging to any structures (denoted by 
Pall), is Pmax/Pall ≈ 1. As Huv increases, the identified coherent structures 

Fig. 3. Summary of the structure classification, illustrated for the square duct at Reτ = 180. The coordinates are reported in outer units. (Top) Example of a large 
structure in the core of the domain, illustrating the minimum distance from the horizontal and vertical walls ymin and zmin, respectively; the sizes of the structure in the 
three directions, Δx,Δy and Δz, and the position of the centre of the mass (ycm, zcm). (Bottom left) Realistic representation of objects which belong to the different 
families: detached (D), wall attached (WA), side attached (SA), tall-wall attached (TWA), tall-side attached (TSA), corner attached and tall-corner attached (TCA). 
The figure does not represent an actual instantaneous cross-section. (Bottom right) Regions of domain relevant for the structure analysis. The regions defined in inner 
units are illustrated for Reτ = 180 only. Near-wall (n.w.) regions (y+ < 20 or z+ < 20) and the near-corner region (y+ < 20 and z+ < 20), spanwise regions (vertical 
dashed lines) A (z+ < 50) and (horizontal dashed lines) B (z > 0.6). 
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start to break into smaller ones and, at a certain value of Huv,Pmax/Pall 

suddenly decreases (percolation crisis). A further increase of Huv will 
eventually lead to a modest increase of Pmax/Pall, when only a few, small 
and very intense events still satisfy condition (1). The differences in the 
percolation diagrams are probably due in part to the geometry of the 
domain and in part to structural differences in the turbulence fluctua
tions but we do not investigate these effects in the present work. We 
focus on results obtained for Huv = 2, a value close to the percolation 
crisis for all the cases, which guarantees to isolate the intense events in 
the domain. For this value of Huv, the portion of the volume occupied by 
the structures is ≈ 7% of the total volume for all the cases. Due to the 
presence of the vertical walls, we also consider turbulent structures 
defined as regions of the domain where: 

|uw| > Huwurmswrms. (2) 

Note that uw events are exactly equivalent to uv in the square duct. 
The percolation analysis for uw in the rectangular duct gives very similar 
results to that for uv, and it is not shown. 

3. Geometrical properties of the coherent structures 

In turbulent channel flow, Lozano-Durán et al. (2012) found that it is 
possible to identify three different families of uv structures, which we 
will denote as follows: wall-attached objects (WA), whose centre of mass 
is located in a near-wall region below y+ ≈ 20; detached objects (D), 
located far from the wall; and tall wall-attached (TWA), which extend 
from the region near the wall up to the core of the channel, sometimes 
being connected with both walls. Note that the centre of mass of the 
structures is defined as: 

xcm =
1

V

∑N

i=1
V ixi, (3)  

where N is the number of connected grid points in the structure, V i the 
volume corresponding to each grid point, x = (xi,yi,zi)is the position of 
the point and V is the total volume of the structure. In the duct, the 
presence of vertical walls leads to a more complex scenario. We classify 
uv structures in the duct into seven different families making a distinc
tion between objects attached to one wall or two perpendicular walls. 
The boundaries of the classification regions are illustrated in Fig. 3 
(bottom left) for the square duct at Reτ = 180. 

The classification is based on the location of centre of mass of the 
structures (ycm, zcm), and on the points belonging to the structure which 
are closer to the walls, denoted ymin and zmin for the horizontal and the 
vertical walls, respectively. The families under study in the duct are 
defined as follows: detached structures (D) are entirely located far from 
the walls (y+min > 20 and z+min > 20); wall-attached structures (WA) have 
the centre of mass in the regions near horizontal walls (y+cm < 20); side- 
attached structures (SA) have the centre of mass in the regions near the 
vertical walls (z+cm < 20); tall-wall attached structures (TWA) have the 
centre of mass far from the horizontal walls but are partly contained in 
the corresponding near-wall region (y+min < 20); tall-side attached 
structures (TSA) are analogous to TWA for the vertical wall (z+min < 20); 
corner attached structures (CA) have the centre of mass in the near 
corner region (y+cm < 20 and z+cm < 20) and tall-corner attached struc
tures (TCA), which are partially embedded in both a near-vertical wall 
and a near-horizontal wall (y+min < 20 and z+min < 20), but have the centre 
of mass far from the walls. Note that the TCA structures do not necessary 
enter in the near-corner region, but are usually long and complex objects 
with some branches entering the near-wall regions of two adjacent 
perpendicular walls. 

In a preliminary study (Atzori et al., 2018), we compared the 
geometrical properties of the structures at three different spanwise lo
cations and they employed the optimal value of Huv which maximises the 
number of detected structures. We concluded that the WA and SA 
structures in the duct exhibit features similar to those of the WA struc
tures in the channel. On the other hand, D objects closer to the vertical 
walls in the duct tend to be narrower than D objects in the channel, and 
the same is true for TWA structures closer to the vertical walls. It has also 
been observed that, in the duct, if TWA objects are considered together 
with TCA, they have similar geometrical properties as those of the tall 
wall-attached objects (TWA) in the channel; note however that certain 
TWA structures in the channel are wider than the spanwise size of the 
duct. 

In the present work, we focus on two different spanwise regions of 
duct, which are defined taking into account the scaling properties of the 
secondary motion: region A extends from the vertical wall to the loca
tion of the minimum of V (z+ < 50), and here the velocity profiles scale 
if the wall-normal vertical is expressed in inner units; region B, on the 
other hand, comprises the region where the core-circulation is dominant 
(z > 0.6), as illustrated in Fig. 3 (bottom right). The structures are 

Fig. 4. JPDF of the minimum and maximum distance 
of the identified objects to the horizontal walls in 
(left) region B of the duct and in the channel (right) 
region A of the duct. The contours represent 95% of 
the sampled objects. Dark and light colour for Reτ =

360 and Reτ = 180, respectively. Blue for the channel, 
green for the square duct and red for the rectangular 
duct. The grey lines on the right are the same contours 
for channel flow shown on the left, reported as 
reference. (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the web version of this article.)   
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assigned to region A or B based on the position of their centre of mass 
and those which are located neither in A nor B are discarded. Note that 
the same definitions for regions A and B are employed in the rectangular 
duct. 

Fig. 4 illustrates contours of the joint-probability density function 
(JPDF) of ymin and ymax of uv events for all cases (denoted f(ymin,ymax)). In 
region B of the duct, f(ymin, ymax) is in good agreement with that of the 
channel for both Reynolds numbers and aspect ratios. As already pointed 
out by Lozano-Durán et al. (2012), it is possible to recognize the exis
tence of the D, WA and TWA families. The first family is represented by 
the diagonal bands of f(ymin, ymax) parallel to the line (ymin = ymax), and 
correspond to objects identified from above the near-wall region up to 
the core of the domain, which have an extension in the vertical direction 
which is roughly independent on the wall distance. The WA family 

corresponds to the events close to the origin of the axis. The TWA family 
corresponds to the structures whose ymin is below y+ ≈ 20 and ymax is 
much higher. In some instances, ymax is even higher than the half- 
channel height, a fact that illustrates the existence of very large ob
jects which extend through most of the domain in the vertical direction. 
Interestingly, in region A of the duct, which does not have an equivalent 
in the channel, f(ymin, ymax) is qualitatively different than that in region B 
and the channel. In fact, very large TWA uv are virtually absent in region 
A, illustrating the impact of the vertical wall that prevents the occur
rences of large ejections and sweeps in the proximity of the corner. Note 
that, in this region, detached uv also play the role of spanwise fluctua
tions in respect of the boundary layer attached to the vertical wall, and 
their extension in the y direction scales in inner-units. 

Although coherent structures exhibit a rather complex shape, several 

Fig. 5. PDF of the length in the streamwise direction in inner-units, denoted Δ+
x , for (left) D structures in and (right) large attached structures, which are TWA 

structures in channel and TWA and TCA in rectangular duct. Blue for the channel, red for the rectangular duct. Solid lines and symbols for regions B and A in the duct, 
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. PDF of the vertical aspect ratio Δx/Δy for (left) 
WA structures in channel flow and in region B of the 
duct, and (right) CA structures in duct flows. Dark and 
light colour for Reτ = 360 and Reτ = 180, respec
tively. Blue for the channel, green for the square duct 
and red for the rectangular duct. The grey lines on the 
right are the same contours for WA structures in 
channel flow shown on the left, reported as reference. 
(For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version 
of this article.)   

Fig. 7. (Left) PDF of the vertical aspect ratio Δx/Δy 

for TWA structures in channel flow and in region B of 
the duct. (Right) TWA structures in region A and TCA 
structures in duct flows, indicated with solid lines and 
symbols, respectively. Dark and light colours for Reτ =

360 and Reτ = 180, respectively. Blue for the channel, 
green for the square duct and red for the rectangular 
duct. The grey lines on the right are the same contours 
for TWA structures in channel flow shown on the left, 
reported as reference. (For interpretation of the ref
erences to colour in this figure legend, the reader is 
referred to the web version of this article.)   
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studies showed that their bounding box typically follows common pat
terns and scaling laws which are characteristic of wall-bounded turbu
lent flows. For instance, Hwang and Sung employed the size of the 
bounding box to characterize structures of velocity fluctuations in tur
bulent boundary layers (Hwang and Sung, 2018) and pipe flows (Hwang 
and Sung, 2019). Lozano-Durán et al. (2012) reported that, in turbulent 
channel flow, the proportionality relation between the lengths in the 
three directions of TWA ejections (denoted by Δx,Δy and Δz) is 
approximately: 

As previously discussed for square duct and channel at Re180 (Atzori 
et al., 2018), the presence of the corner modifies both the structure 
shape and size. In Fig. 5, we illustrate the probability density function 
(PDF) of the length in the streamwise direction of detached (D) and large 
attached structures (TWA and TCA) in the channel at Re360 and the two 
spanwise regions of the rectangular duct at the same Reynolds number. 
Structures in region B of the duct have lengths which are in good 
agreement with those in the channel, whereas those in region A are 
shorter. In the channel and region B of the duct, it is possible to observe 
very long objects, with Δ+

x as high as many times the domain height, for 
both detached (D) and large wall attached objects. In region A of the 

duct, very long wall-attached objects are rarer and, interestingly, there 
are no detached objects longer than the domain height. 

To investigate how the presence of the corner modifies the structure 
shape, we consider the PDF of the ratio between the lengths in the 
streamwise and the vertical direction for different families, denoted 
f(Δx/Δy), and its mean value, denoted 〈Δx/Δy〉. Fig. 6 illustrates f(Δx/
Δy) for wall-attached (WA) and corner-attached (CA) structures. The 
shape of WA structures is in good agreement for all the cases, and in 
particular for channel and duct flows. Their average vertical aspect ratio 
is approximately 〈Δx/Δy〉 ≈ 7 at Reτ = 180, and 〈Δx/Δy〉 ≈ 6 at Reτ =

360, showing the close relation with Reynolds-stress events and near- 
wall streaks. Effects of the corner on near-wall structures are immedi
ately apparent examining the CA family in the duct, which does not have 
an equivalent in the channel. The PDF f(Δx/Δy) for CA structures is 
modified by the presence of very elongated objects, which, despite being 
relatively rare, lead to an appreciably higher 〈Δx/Δy〉. Furthermore, 
Reynolds-number effects are more evident for the CA family, as the 
vertical average aspect ratio is 〈Δx/Δy〉 ≈ 14 at Reτ = 180 and 〈Δx/Δy〉

≈ 8 at Reτ = 360. Similarly, D structures have the same 〈Δx/Δy〉 ≈ 1.5 
in the channel and the region B of the duct, but 〈Δx/Δy〉 ≈ 2.5 in region 
A (the PDF is not shown). The fact that the secondary flow is still non- 
negligible along the centre-plane of both the square and the rectan
gular ducts suggests examining the shape for the large objects in the 
domain, which belong to the TWA and TCA families. The PDF of their 
vertical aspect ratio is illustrated in Fig. 7, separately for region A and 
region B in the duct. Despite the secondary flow, f(〈Δx/Δy〉) of TWA 
structures in region B of the duct and the channel are in very good 
agreement. Furthermore, their dependence on the Reynolds number is 
quite low, since 〈Δx/Δy〉 ≈ 3 at both Reτ = 180 and 360. These results 
are also compatible with those reported by Lozano-Durán et al. (2012) 
for channel flow at much higher Reynolds numbers. Differences between 
channel and duct arise for TWA structures in region A and considering 
the TCA family, which does not have an equivalent in channel flows. The 
PDF of Δx /Δy of TWA structures in region A of both square and rect
angular ducts show that they are more elongated than in channel flows. 
In particular, their average vertical aspect ratio is 〈Δx/Δy〉 ≈ 4 at both 
Reynolds numbers. TWA structures in region A of the duct are more 
similar to the objects belonging to the TCA family, which have 〈Δx/Δy〉

≈ 4 and ≈ 4.5 at Reτ = 180 and 360, respectively. Note that comparing 
structures in different regions in the duct requires to take into account 
the fact that they have different sizes. We examined the aspect ratio Δx/

Table 2 
Mean aspect ratios of corner-attached (CA), wall-attached (WA), detached (D), 
tall wall-attached (TWA), and tall corner-attached (TCA) structures, for the 
channel and regions A and B in the duct. The structure lengths in the streamwise, 
vertical and spanwise direction are denoted by Δx,Δy and Δz, respectively. For 
the duct, the results for square and rectangular ducts are apparent only to the 
second or the third digits. Note that structures with the same geometrical 
properties are grouped in the table.   

Reτ = 180  Reτ = 360  

CA (duct) Δx ≈ 14Δy ≈ 23Δz  Δx ≈ 8Δy ≈ 12Δz  

WA (duct, reg. A) Δx ≈ 8Δy ≈ 6Δz  Δx ≈ 7Δy ≈ 5Δz  

WA (channel) Δx ≈ 7Δy ≈ 6Δz  Δx ≈ 6Δy ≈ 5Δz  

WA (duct, reg. B)   
D (channel) Δx ≈ 1.5Δy ≈ 2Δz  

D (duct, reg. B)   
D (duct, reg. A) Δx ≈ 2.5Δy ≈ 3Δz  

TWA (channel) Δx ≈ 3Δy ≈ 4Δz  

TWA (duct, reg. B)   
TWA (duct, reg. A) Δx ≈ 4Δy ≈ 6Δz  

TCA (duct) Δx ≈ 4.5Δy ≈ 5Δz   

Fig. 8. Sizes of the average bounding boxes of (left) detached and (right) tall-wall-attached structures in (blue) channel and (red) rectangular duct at Reτ = 360. For 
the duct, the sizes are reported for structures near the corner (A), in the center (B) and the intermediate region (symbols without letter). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Deltay as a function of the streamwise length, Δx (not shown here), and 
we found that longer structure tends to be also more elongated, irre
spective of their location, and that structures in the corner region of the 
duct are more elongated than those of similar length in the channel and 
the central region. 

Δx ≈ 3Δy ≈ 3Δz. (4) 

We also performed a similar analysis examining the PDFs of the ratio 
between streamwise and spanwise lengths of the structures, f(Δx/Δz)

(the PDFs are not shown in the paper). For all the families of uv events, 
Δz is on average the shortest length, and the same qualitative observa
tions valid for the average Δx/Δy also held for Δx/Δz, in most cases. In 
particular, WA and TWA structures in region B of the duct are similar to 
the same objects in the channel. The first family exhibits 〈Δz/Δx〉 ≈ 6 
and ≈ 5 for Reτ = 180 and 360, respectively, while the latter has 〈Δz/Δx〉

≈ 4 at both Reynolds numbers. A very similar effect on the spanwise 
aspect ratio is also observed for D objects, for which 〈Δx〉/〈Δz〉 ≈ 2 in the 
channel and in region B of the duct and 〈Δx〉/〈Δz〉 ≈ 3 in region A of the 
duct. 

The average aspect ratios for the different families considered in this 
section are summarized in Table 2, and the average bounding boxes for 
detached and tall-wall-attached structures are illustrated in Fig. 8. In 
this figure, the horizontal and vertical axes are the aspect ratios in the 
horizontal and vertical directions, respectively, so that the bisector of 

the Cartesian plane represents objects with the same size in both cross- 
stream directions. The corner proximity modifies the shape of the 
different structures in different ways. Detached structures, which are 
enclosed in almost cubic bounding boxes in the channel and region B of 
the duct, become more elongated in the streamwise direction. On the 
other hand, tall-wall-attached structures, which are already propor
tionally wider than detached ones, become even wider. 

It is important to note that the average aspect ratios only provide a 
general indication of the structures scaling properties. Nevertheless, this 
analysis unveils measurable differences between intense Reynolds-stress 
events in the proximity of the corner of the duct, where the secondary 
flow originates, and the same type of structures in the core region of the 
duct and the channel. It is also interesting to note that, for all the 
quantities considered so far, square and rectangular ducts are remark
ably similar. 

4. Fractional contributions to the secondary flow 

In the present section, we investigate how intense events contribute 
to the mean velocity in the duct and the channel. We consider fractional 
contributions, which are defined for certain structures as volume aver
ages over the volume occupied by the structures, weighted with the 
probability of structures to be detected. The fractional contribution from 
a certain intense event XX to a mean quantity Ξ is denoted by Ξ>

XX. For 

Fig. 9. Vertical profile of (symbols) fractional 
contribution from intense uv events (Huv = 2) to the 
vertical component of the velocity V>

uv, compared with 
the (solid lines) average of the same component, V. 
Channel in blue; square and rectangular duct at the 
vertical centre-plane in green and red, respectively. 
Light and dark colors are for Reτ = 180 and Reτ =

360, respectively. (For interpretation of the refer
ences to colour in this figure legend, the reader is 
referred to the web version of this article.)   
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instance, V>
uv is the fractional contribution to the vertical component of 

the velocity from intense uv, which for a single field of the duct is 
computed as: 

V>
uv

⎛

⎜
⎜
⎝j, k

⎞

⎟
⎟
⎠ =

∑Nx

i=1
p
(

i, j, k
)

Nx

∑Nx

i=1
p

⎛

⎜
⎜
⎝i, j, k

⎞

⎟
⎟
⎠ ṽ

⎛

⎜
⎜
⎝i, j, k

⎞

⎟
⎟
⎠, (5)  

where i, j and k are the indices for the streamwise, vertical and spanwise 
directions, respectively, Nx is the number of grid points in the stream
wise direction, p(i, j, k) is 1 if |uv(i, j, k)| > Huvurmsvrms(j, k) and 0 other
wise, and ṽ is the value of the instantaneous vertical component of the 
velocity. According to this definition, fractional contributions are ad
ditive, in the sense that the sum of the average over the sampled and the 
non-sampled portions of the domain corresponds to the average over the 
entire domain. Note that the quadrant analysis is traditionally employed 
to evaluate contributions to the Reynolds stress. However, in the duct, 
the mean momentum budgets include both uv and uw, and, under 
another perspective, the mean streamwise vorticity equation includes 
vw, v2 and w2. Thus, it is not trivial to determine which coherent 
structures are more relevant to explain the flow dynamics. Nevertheless, 
the quadrant analysis still identifies the region of the flow where the 

most intense velocity fluctuations occur. The rationale of the present 
approach is not to assess how these structures contribute to balance the 
averaged equations, but rather to investigate their connection with the 
mean flow directly. 

We firstly consider the fractional contribution to the vertical 
component of the velocity in the channel and at the vertical centre-plane 
of the duct from intense uv events, denoted by V>

uv (Fig. 9). It is possible 
to appreciate the differences in the mean secondary flow for the various 
cases at this location, which are due to both aspect-ratio and Reynolds- 
number effects for Reτ = 180. In the core of the channel, V>

uv reflects the 
predominance of “ejections” the among intense events, a result which 
was already reported at higher Reτ by Lozano-Durán et al. (2012). Note 
that ejections, in the context of the quadrant analysis, are regions of the 
flows where the velocity fluctuations in the streamwise and vertical 
directions are negative and positive, respectively. To the contrary, re
gions where the velocity fluctuations are positive in the streamwise di
rection and negative in the vertical direction are called “sweeps”. From 
the value of 0 at the wall, V>

uv initially decreases reaching a minimum at 
y+ ≃ 9 before increasing farther from the wall, and it changes sign at 
y+ ≃ 15. For y+ > 15, it further increases reaching an almost constant 
value at y+ ≃ 50, before decreasing again above y ≃ 0.60 to become 
0 along the horizontal centre-plane. The first change of sign of V>

uv 

Fig. 10. Vertical profiles of the fractional contribution V>
uv (Huv = 2) in the channel and at the location of local V minimum closer to corner in square and rectangular 

duct compared with the average V. Colors and symbols as in Fig. 9. The vertical dashed line in black illustrates the wall-distance where the vertical profile encounters 
the corner bisect.or (y+ = 50). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Vertical profiles of the fractional contribution V>
uv (Huv = 2) in the channel and at the location of local maximum closer to corner in square and rectangular 

duct compared with the average, V. Colors and symbols as in Fig. 9. The vertical dashed line in black illustrates the wall-distance where the vertical profile encounters 
the corner bisect.or (y+ = 11). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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coincides with the transition between the viscous wall region, where the 
most intense fluctuations are the consequence of sweeps that occur 
farther from the wall, and the logarithmic region, where ejection events 
with respect to the closer wall are predominant (this trend does not 
depend on the choice of Huv). Closer to the horizontal centre-plane of the 
channel, the largest ejection events from the opposite wall start to have 
an influence, eventually reaching a balance at y/h = 1, where V>

uv is 
zero, as implied by the symmetry of the flow. 

Despite the differences in the secondary flow, for all the cases 
considered here there is a good agreement between V>

uv in channel and 
duct. It is interesting to observe that such similarity is not affected by the 
differences in the relative intensity of the contribution to V>

uv with 
respect to the mean V. In fact, in the square duct at Reτ = 360, for which 
the centre-plane is the location of a local maximum and the secondary 
flow is expected to scale in outer units, V is higher than V>

uv up to 
y/h ≈ 0.7. In the square duct at Reτ = 180, the secondary flow is less 
intense and V>

uv is, coincidentally, in good agreement with V between 
y+ > 15 and y/h < 0.3. In the rectangular duct, where the vertical 
centre-plane is farther from the vertical wall and the secondary flow is 
relatively weak, V is almost always lower than V>

uv. 
As opposed to what happens at the vertical centre-plane, V>

uv in the 
duct significantly differs from that in the channel in the near-corner 
region, where the secondary flow scales if the wall-normal distance is 

expressed in viscous units. Fig. 10 shows V>
uv and V in the duct at the 

location of the minimum of V,z ≈ 51. The contribution in the channel is 
reported as well as a reference. At this location, V is negative, therefore 
its sign is opposite to that of V>

uv in the channel. However, above the 
near-wall region and below the corner bisector, i.e. for 15 < y+ < 50, 
the square duct exhibits intense ejections which are relevant enough to 
have V>

uv positive. Furthermore, in a relatively small region up to 
y+ ≃ 25, including the near-wall region where intense sweeps are 
prevalent, V>

uv is in good agreement between channel and duct. Note that 
V in the square duct scales well up to y+ ≈ 100. Despite the fact that the 
behavior of V and of V>

uv as functions of the wall-normal distance are 
qualitatively different, the effect of the geometry in the rectangular duct 
is quite similar for both of them. In fact, in the square duct V>

uv scales if 
the wall-normal distance is expressed in inner units as V does, and the 
agreement of V>

uv between Reτ = 180 and Reτ = 360 is better for the 
square duct than for the channel. In the rectangular duct, V>

uv does not 
scale, as it happens for V, and the locations of the local extrema for both 
V>

uv and V move farther from the horizontal wall as the Reynolds number 
increases. 

Closer to the vertical wall, V changes sign again, and it exhibits a 
local maximum at a distance from the vertical wall of z+ ≈ 11. The mean 
V and the corresponding fractional contribution V>

uv on this profile are 
shown in Fig. 11. This maximum is located quite far from the horizontal 

Fig. 12. Horizontal profile at y+ = 50 of the contribution V>
uv (Huv = 2) for square and rectangular duct, compared with V>

uv(y+ = 50) in the channel and the time 
and ensemble averages. Colors and symbols as in Fig. 9. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 13. Horizontal profile at y+ = 20 of the contribution V>
uv (Huv = 2) for square and rectangular duct, compared with V>

uv(y+ = 50) in the channel and the time 
and ensemble averages. Colors and symbols as in Fig. 9. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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wall (approximately y+ ≈ 71 in the square duct). The contribution V>
uv 

still scales over the wall-normal distance up to y+ ≈ 50 in the square 
duct, and it has no obvious relation with the same quantity in the 
channel. This result is perhaps not surprising, because of the presence of 
the vertical wall, but it is worth noting that there is no agreement with 
V>

uv for the channel even in below the wall-bisector, y+ < 11. In this 
region, V>

uv is very small, which is a consequence of the fact that intense 
events are almost absent. Farther from the wall and above the corner 
bisector, V>

uv in the duct increases and it exhibits a maximum at a wall- 
normal distance similar to that of the maximum in V, but it always re
mains lower than in the channel and significantly lower than the mean 
V. Above y+ > 100, which is the region of the domain where intense uv 
are spanwise fluctuations in respect to the vertical wall, the contribution 
decreases, becoming again close to zero. 

To better characterize the contribution V>
uv, we also examine its 

dependence on the distance from the vertical wall on the horizontal 
profiles at y+ = 50 and y+ = 20 (Fig. 12 and Fig. 13, respectively). On 
both horizontal profiles, the behaviour of V>

uv follows a common pattern, 
with small differences between all the cases. In the profile at y+ ≈ 50, it 
is possible to identify three different regimes in terms of the distance 
from the vertical wall. In the near-corner region, where V scales in inner 
units, V>

uv also scales in inner units, although the positions of the local 
extrema do not match with those of V. In particular, the first local 
maximum and local minimum of V>

uv are closer to the vertical wall than 
the corresponding maximum and minimum of V. Interestingly, this 
“displacement” of the extrema is smaller for the profile at the shorter 
distance from the wall of y+ ≈ 20, a fact that underlines the connection 
between secondary flow and high- and low-speed streaks in the near- 
corner region of the domain. However, despite this relation with V, 
the absolute value of V>

uv remains relatively small. In the profile at 
y+ ≈ 50, farther from the vertical wall, it is possible to identify an in
termediate region where V>

uv does not scale in inner units but it ap
proaches the value of V>

uv(y+ = 50) in the channel at the same Reynolds 
number. In this intermediate spanwise region, the trend of V>

uv vaguely 
resembles that of V, in the sense that for the range of z+ where V is 
increasing (or decreasing) it is possible to identify a corresponding range 
of z+, at lower distance from the vertical wall, where V>

uv is also 
increasing (or decreasing). In particular, for both square and rectangular 
ducts at Reτ = 180, after V reaches the minimum at z+ ≈ 50+ it in
creases up to a local maximum, which is higher than V>

uv in the channel, 

and it decreases again for higher z+. The contribution V>
uv has a similar 

trend, including a region where V>
uv in the duct is higher than V>

uv in the 
channel, but, as in the near-corner region, the local extrema have 
different positions. Even farther from the wall it is possible to identify a 
third spanwise region, for which V>

uv at y+ = 50 approaches asymptoti
cally the value of V>

uv for the same wall-normal distance in the channel. 
The extension of this region is very small for the square duct at Reτ =

180, for which it is limited at z+ > 160, and for the rectangular duct at 
the same Reynolds number is observed at a distance from the vertical 
wall higher than the half-height of the duct (z+ ≃ 220). In this asymp
totic region V<

uv is almost constant and it does not show any correlation 
with the secondary flow, despite the fact that the amplitudes of V<

uv and 
V change with z+ and they differ in the various cases. For instance, in the 
square duct at Reτ = 360 the contribution V>

uv remains constant for 
z+ > 200, i.e. the region where V monotonically increases from ≈ 0 to a 
value higher than that of V>

uv approaching the vertical center-plane. 
The presence of a spanwise region where V>

uv in the duct is the same 
as in channel is also apparent on the horizontal profile at y+ ≈ 20 for the 
data at Reτ = 360. In square duct at Reτ = 180,V>

uv(y+ = 20) seems to 
reach a uniform value close to 0 for z+ > 150, instead of the value of 
V>

uv(y+ = 20) in the channel. Such a discrepancy corresponds to the 
miss-match that is possible to observe between the V>

uv(y) profiles at the 
centre-plane in the near-wall region (Fig. 9), and it is perhaps related 
with the fact that secondary flow is still developing at this Reynolds 
number. In the rectangular duct at Reτ = 180, the horizontal profile 
V>

uv(y+ = 20) exhibits a quite complex behaviour, but it also eventually 
reaches the same value as in channel flow. Because intense uv events are 
relatively rare in this region of the domain, and because the agreement 
between V>

uv is better for the rectangular duct are Reτ = 360, we did not 
further investigate this phenomenon. 

In the square duct the two cross-stream components of the velocity 
are identical, together with the relative contributions, e.g. V>

uw and W>
uw. 

On the other hand, as we have previously discussed, V and W are 
qualitatively different in the rectangular duct, due to the change of sign 
of W in the core region in the latter. Fig. 14 shows, for both Reynolds 
numbers, the contributions to the horizontal component of the velocity 
from intense uw events, W>

uw, and the contribution V>
uv in channel flow 

for comparison. The profiles are reported as functions of the wall- 
distance in outer units, i.e. the spanwise coordinate z for the rectan
gular duct (0 < z < 3) and for the square duct (0 < z < 1) and the 

Fig. 14. Contribution to the spanwise component of the velocity in square and rectangular ducts form intense uw events, W>
uw , compared with the mean W and the 

contribution V>
uv in the channel. Colors and symbols as in Fig. 9. 
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vertical coordinate for the channel (0 < y < 1). At this location it is 
possible to clearly distinguish between geometry and Reynolds-number 
effects on W. On the one hand, the secondary motion is more intense for 
Reτ = 360 than for Reτ = 180, which is due to the fact that in the latter 
the core circulation is not present. On the other hand, for both Reynolds 
numbers, the maximum of W is lower in the rectangular duct, W changes 
sign at a similar distance from the vertical wall for both rectangular 
ducts (z ≃ 0.5) and it exhibits a minimum at a distance from the vertical 
wall higher than the half-height of the duct (z ≃ 1.1). However, both the 
Reynolds number and the geometry have a less significant impact on the 
contribution from the intense events W>

uw. In fact, as observed for V>
uv 

along the vertical centre-plane, W>
uw does not follow the spanwise 

dependence of W and it is in good agreement in channel and ducts, 
despite the presence of the secondary flow in the latter. Furthermore, V>

uv 
and W>

uw are in relatively good agreement in the square and rectangular 
duct, despite the differences in their respective secondary-flow patterns. 
Such agreement holds up to a distance from the vertical wall which is 
almost the half-height of the duct, and it is better for higher Reynolds. In 
particular, W>

uw exhibits for all the cases the change of sign at z+ ≃ 15 
and the same almost constant value of V>

uv above z+ ≃ 50 (W>
uw is slightly 

lower in the rectangular duct than in the square duct, but these differ
ences are within the statistical uncertainty). Furthermore, despite the 
fact that the vertical centre-plane in the rectangular duct is at a distance 
from the wall three times larger than for channel flow, W>

uw decreases at 
a very similar distance from the wall of approximately z ≃ 0.6. The 
differences between W>

uw in the rectangular duct with respect to W>
uw (or 

V>
uv) in the square duct and V>

uv in the channel are limited in how they 
approach 0 at z/h ≃ 0.6 at the centre-plane. In the rectangular duct, W>

uw 
exhibits an inflection point and gradually reaches 0 farther from the 
wall. Interestingly, there is a qualitative difference between the two 
considered Reynolds numbers, which may be related to the still evolving 
structure of the secondary flow. In fact, at Reτ = 180 the contribution 
remains always positive, while at Reτ = 360 it becomes negative right 
after z = 1, reaching again 0 from below closer to the vertical centre 
plane. The distance from the wall and the spanwise evolution suggest 
that the process that gradually leads to W>

uw in the region z > 1 in the 
rectangular duct is fundamentally different from that occurring for V>

uv 
in channel and duct approaching the centre-plane. The results discussed 
in the present section are qualitatively valid for values of the threshold 
Huv higher than the critical one, at which the percolation crisis occurs. 
The effects of varying Huv in a wide range are described in the appendix. 

5. Conclusions 

In the present work we have studied the properties of coherent 
structures in turbulent square duct at moderate Reynolds numbers, with 
the aim of identifying the features of the instantaneous turbulent flow 
responsible for the secondary motion of Prandtl’s second kind. The 
intense events are detected following the three-dimensional extension of 
the quadrant analysis introduced by Lozano-Durán et al. (2012), which 
studies the connected regions of the domain fulfilling a condition such as 
|uv| > Huvurmsvrms or |uw| > Huwurmswrms. Based on the percolation anal
ysis, we focused on the results obtained for Huv = 2 and Huw = 2, which 
is a value high enough to ensure that the most intense events are 

isolated. 
We have performed a comparative analysis between duct and 

channel at similar Reynolds number considering two different points of 
view: the structure geometrical properties and their contributions to the 
cross-stream components of the mean velocity. Due to the multi-scale 
nature of the secondary motion, we have focused on two different 
spanwise regions of the domain in the duct. The corner region (region A 
in the text above, i.e. z+ < 50) is defined to include the locations where 
the mean vertical component of the velocity V scales if it is expressed in 
outer units and the wall-normal distance is expressed in inner units. The 
core region (region B, i.e. z > 0.6) is defined to include the region where 
V scales in outer units, although we note, according to the recent find
ings by Gavrilakis (2019), that the topology of the secondary motion is 
still evolving at this range of Reynolds numbers. In the core region of the 
duct, Reynolds-stress intense events are similar to those in the channel. 
In particular, they exhibit similar aspect ratios in three directions, and 
their contribution to the mean in-plane components of the velocity is in 
good agreement in both flows, despite the existence of the secondary 
flow in the duct. In both the channel and the core region of the duct, 
wall-attached and tall-wall attached uv structures are present and the 
largest objects tend to reach the two opposite walls. 

In the corner region of the duct, the geometrical properties of the 
structures are different than those in the core region, and intense events 
are on average shorter but more elongated in the streamwise direction 
than in the core region. In this region, the fractional contributions are 
less intense than in the channel or in the core region, and almost 
everywhere they are much intense than the mean velocity. Furthermore, 
in rectangular ducts the Reynolds-stress events do not yield a noticeable 
contribution to the core circulation towards the vertical walls, which is 
characteristic of that flow. 

The effects of the corner on the geometrical properties of the intense 
Reynolds-stress events are in agreement with results already reported in 
the literature (Pinelli et al., 2010; Vidal et al., 2018; Uhlmann et al., 
2007), and suggest that the secondary flow could be described in terms 
of instantaneous features of the turbulent flow. On the other hand, 
despite the important role of these structures in the dynamic of wall- 
bounded turbulent flows, based on the present analysis it can be 
stated that their fractional contribution to the secondary flow is rela
tively low, both in the core and in the corner region. 
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Appendix A. Statistical convergence 

In order to assess the statistical convergence, we consider the kinetic energy associated with the secondary flow integrated over the section of the 
duct (as in Ref. Vinuesa et al., 2018), denoted by K = (V2 + W2)/2, and the PDF of the vertical aspect ratio, f(Δx/Δy), of CA attached structures in the 
rectangular duct at Reτ = 180. The integrated K based on ensemble averaging over increasing number of fields is shown in Fig. 15 (left), in which it can 
be observed that this quantity differs by ≈ 4% and ≈ 1% with respect to the long-term statistics reported in Ref. Vinuesa et al., 2018 for the ducts at 
Reτ = 360 and Reτ = 180, respectively, when the entire data-set is considered. 

Fig. 15 (right) shows a comparison between the PDF of the vertical aspect ratio Δx/Δy for CA structures in the rectangular duct at Reτ = 180 for the 
entire data-set and half of it. Note as the CA structures in this case are the less numerous among all the families considered in the present work, due to 
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the low Reynolds number and the fact that the vertical and spanwise directions are not equivalent. Nevertheless, the two PDFs are in excellent 
agreement. 

Appendix B. Impact of the threshold on fractional contributions. 

The effects of varying the threshold Huv on the fractional contribution V>
uv are illustrated in Fig. 16 in the channel and the centre-plane of the square 

duct at Reτ = 360. The absolute value of V>
uv rises as Huv increases at all wall-distances up to Huv ≈ 2.0 and decreases for higher Huv. This trend is 

explained by the fact that, in the channel, increasing Huv means to select the most intense events, which are ejections (u < 0 and v > 0). However, since 
the fractional contribution is a conditioned averaged weighted with the probability of occurrence, to increase Huv above a certain value eventually 
results in decreasing the contribution. In the duct, as opposed to the previous case, in the region where the secondary flow is particularly intense 
(approximately between y+ ≃ 20 and y ≃ 0.4), V>

uv monotonically decreases with Huv. However, for y > 0.4,V>
uv follows the same behaviour as V<

uv in 
channel flow, increasing for higher Huv up to ≈ 2 and decreasing for larger Huv. 

Fig. 16. Dependence of the fractional contribution 
from uv events to the vertical component of the ve
locity on the value of the threshold Huv in (left) the 
channel and (right) the centre-plane of the square 
duct, at Reτ = 360. The solid lines are the mean V. 
The fractional contributions are denoted with symbols 
for various values of Huv : Huv = 0.5 (▴), Huv = 2.0 (•) 
and Huv = 4.0 (▾). The black arrows show the effects 
of increasing Huv. (For interpretation of the references 
to colour in this figure legend, the reader is referred to 
the web version of this article.)   

Fig. 15. Statistical convergence: (left) integrated ki
netic energy of the secondary motion in the square 
duct computed via ensemble averaging (solid lines) as 
function of the number of fields and the (dashed lines) 
values reported by Vinuesa et al. Vinuesa et al., 2018 
based on long-term statistics. Light and dark green for 
the Reτ = 180 and 360, respectively. (Right) Com
parison between the PDF of the vertical aspect ratio 
Δx/Δy for CA structures in the rectangular duct at 
Reτ = 180 for (solid red line) the entire data-set and 
(black symbols) half of it. Note that the solid red line 
is the same as in Fig. 6 (left). (For interpretation of the 
references to colour in this figure legend, the reader is 
referred to the web version of this article.)   
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