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Abstract—Wireless Sensor Networks (WSNs) have evolved into in-
creasingly complex systems with the added capabilities to run dis-
tributed applications. In order to meet application requirements, such
as execution time, and to efficiently use limited node energy resources,
a task allocation strategy is required. Basically, the set of tasks that
have to be completed in order to finalise an application has to be
distributed among sensor nodes and scheduled to be processed in the
best possible way.

Centralised task allocation algorithms, in which decisions on task
execution are taken by a single node, can avoid the exchange of
data packets between task execution nodes. However, such algorithms
cannot adapt to dynamic network conditions, and suffer from compu-
tational complexity. Therefore, in this paper, we propose an adaptive
and decentralised Task Allocation Negotiation algorithm (TAN) based
on non-cooperative game theory, where neighbouring nodes engage in
negotiations to maximize their own utility functions. TAN is compared
to three other algorithms: (i) baseline setting with no task assignment to
multiple nodes, (ii) centralised task assignment lifetime optimisation, and
(iii) a dynamic distributed algorithm, DLMA. Simulation results show that
TAN outperforms these algorithms in terms of application completion
time and average energy consumption.

Index Terms—Wireless Sensor Networks, task assignment, game the-
ory.

1 INTRODUCTION
The progress in Wireless Sensor Network (WSN) technol-
ogy, both in terms of processing capability and energy
consumption reduction, has evolved WSNs into complex
systems that can gather information about the monitored
environment and make prompt and intelligent decisions.
These developments have contributed to the efforts on
integrating sensor devices in Future Internet (FI) ar-
chitectures [1], which enables effective interfacing with
other technologies. In doing so, a horizontal ambient
intelligent infrastructure is made possible, wherein the
sensing, computing, and communicating tasks can be
completed using programmable middleware that en-
ables quick deployment of different applications and
services.

One of the major issues with WSNs is maximisation of
network lifetime, due to the fact that sensors are mainly
battery powered. Many efforts have been made so as
to extend network lifetime, one of which is the develop-
ment of algorithms that effectively assign execution tasks

to network nodes. One method to perform task assign-
ment is the use of a central controller that divides large
application programs into smaller and easily executable
tasks and then distributes these tasks to nodes. Task
allocation solutions that consider a central controller
are called centralised solutions. For instance, in [2] a
centralised solution for the maximization of the WSN
lifetime is proposed. In [3][4][5], centralised algorithms
for both reducing network energy consumption and
application execution time are proposed. However, these
centralised algorithms suffer from high computational
complexity, especially for WSNs with a large number
of nodes. Furthermore, centralised algorithms have to
frequently collect updates from nodes in order to adapt
to network dynamics, which is difficult to achieve and
incurs large control packet overhead.

Due to the drawbacks of centralised solutions, dis-
tributed solutions are recently proposed to perform task
allocation in WSNs. For instance, in [6] a communica-
tion scheme based on gossiping is used, while in [7]
a particle swarm optimization algorithm is adopted.
These distributed algorithms reduce the problem com-
plexity, as only local areas are considered rather than the
whole network. The communication overhead caused
by packet exchanges between network nodes and the
central controller is also avoided. Nevertheless, none
of them take into account the execution time of the
application assigned to the network. This could lead to
an inconvenient task assignment strategy, which may
entail that the application deadline is reached before the
application is executed.

In this paper, a new distributed algorithm for the
allocation of application tasks among WSN nodes is
proposed, which is named Task Allocation Negotiation
(TAN). This algorithm aims to reduce application ex-
ecution time as much as possible, with minimal net-
work energy consumption while inducing less compu-
tational complexity than existing algorithms have. The
major contribution is the adoption of the rules of non-
cooperative game theory [8]. Sensor nodes negotiate
among each other to set the application configuration.
In doing so, each node aims at maximising a node
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utility function under the constraints set by neighbouring
sensors. We then prove that the scenario under consid-
eration is a potential game [9], which means that every
improvement of the nodes’ utility functions corresponds
to the same improvement in the utility perceived by the
whole network, which implies that the problem has a
unique outcome that is reachable in finite time.

The obtained solution reduces the average node en-
ergy consumption rate (and hence contributes to net-
work lifetime extension) and simultaneously meets the
application completion time requirements. Simulation
results show significant performance improvements in
both average node energy consumption and application
completion time in a typical reference scenario, with
respect to three settings: (i) the case where the whole
application is carried out by a single sensor node, (ii) the
centralized task assignment approach presented in [2],
and (iii) the distributed task assignment approach pre-
sented in [6]. Furthermore, TAN is tested for random
WSN scenarios. Noticeable gains are obtained for net-
works with high node density and highly populated
clusters, especially when TAN is applied to complex
applications.

This paper is organized as follows. Section 2 presents
the related works, Section 3 introduces the problem
and briefly describes the proposed approach, Section
4 describes the task assignment model, and Section 5
describes the algorithm. Finally, Sections 6 and 7 present
the simulation results and conclusions.

2 RELATED WORK

Since nodes in WSNs are battery powered, a great deal
of effort has been made by researchers to find effec-
tive strategies that increase network lifetime. Different
approaches have been proposed to this end. Some ex-
amples are: convenient deployment of sensors [10], use
of efficient routing techniques [11], and use of static
or mobile relay nodes that help balance network en-
ergy consumption among nodes [12][13][14]. However,
advances in microchip technology have provided addi-
tional capabilities to sensors. Therefore, more advanced
methods that extend network lifetime are now possible,
besides these traditional techniques that either modify
network topology or provide an energy-efficient routing
protocol. Hence, not only is network lifetime optimisa-
tion centred on reduction of packet transmission power,
but it also involves convenient data processing that
reduces the amount of data delivered to data sinks. This
is the principle behind node clustering protocols, such as
LEACH [15] and EC [16], in which cluster head nodes
aggregate data and reduce transmitted data volume,
which in turn reduces the overall transmission energy
consumption of the network.

A step forward in extending network lifetime is to con-
sider not only data aggregation to reduce data volume,
but also any possible data processing tasks based on
network topology, battery power, and node processing

capabilities. However, existing methods have limited
scope in studying lifetime extension with regards to
application data processing. For instance, in [17], max-
imization of cluster lifetimes is studied. However, this
approach considers only communication tasks, but not
the tasks generated by applications and assigned to
the network for execution. Furthermore, it only focuses
on homogeneous networks, which are not common in
real scenarios. In contrast, [18] considers execution of
application tasks, and provides an adaptive task alloca-
tion algorithm that aims at reducing the overall energy
consumption by balancing residual node energy levels.
However, this mechanism requires exchange of some
additional messages among all the nodes in the network,
which considerably increases packet overhead.

Some other studies in [3][4][5], improve network life-
time while reducing task execution time. However, the
algorithms in these works are centralised, and therefore
suffer from high computational complexity, as well as
large control packet overhead due to frequent updates
collected from nodes in order to adapt to network dy-
namics.

To overcome the issues encountered by centralised so-
lutions, the authors in [6] propose an overlaying frame-
work that determines the distribution of tasks among the
nodes in a WSN by means of a distributed optimization
algorithm, based on a gossip communication scheme,
aimed at maximizing network lifetime. A similar ap-
proach is studied in [7], where a distributed algorithm is
proposed based on particle swarm optimization. How-
ever, the major drawback of these studies is that they
do not take into account the deadline of the applications
assigned to the network.

3 PROBLEM FORMULATION

The reference scenario considered in this paper is that
of a hierarchical heterogeneous WSN. The WSN is hier-
archically organised into clusters, with sensor nodes as
cluster members, and cluster heads. The heterogeneity
reflects the fact that, in most real scenarios, nodes with
different characteristic parameters are used. The WSN
under examination needs to run a required application,
which can be divided into smaller tasks that can be
assigned to network nodes to be executed. Due to the
heterogeneous node characteristics, some nodes can per-
form the same task faster than others, and even spend
less energy. The objective of the proposed algorithm,
TAN, is to assign the tasks to suitable nodes, such that
the processing time of the application is as short as
possible and the network lifetime is as long as possible.
TAN includes negotiations among nodes to determine
task assignments. Whenever a node receives some data
(along with the information on which particular tasks
have to be performed on the data) it decides whether
it should perform some tasks or not, depending on the
potential contribution to the network in terms of faster
processing time and longer lifetime.
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3.1 Network Model
The network is modelled as a Directed Acyclic Graph
(DAG) GX = (X,EX), where the vertices represent
the nodes X = {1, . . . , i, . . . , N}, while the links are
described by the set of edges EX = (eij), where each
edge represents a connection from node i to node j.
The network is organised into clusters. Each cluster is
controlled by a single cluster head (CH) which collects
sensory data from nodes in its cluster. There is a single
hop between a sensor node and its corresponding CH. At
the top of the hierarchy is a gateway (GW) node, which
collects data received from the CHs. Sensors transmit
their data to the CHs, which then deliver the collected
data to the gateway through a path of CHs. Rout-
ing paths over the CHs is determined by conventional
routing protocols [11], such as Self-Organizing Protocol,
Location-Based Routing Protocol, etc. In this paper, Hi-
erarchical Power-Aware Routing protocol is used [19],
due to the fact that it is based on a trade-off between
minimizing power consumption and maximizing the
minimal residual power of the network.

Negotiations are performed among neighbour nodes;
multihop negotiations do not take place, and this signif-
icantly reduces the number of message exchanges. No
communication is allowed between sensors belonging to
different clusters. This means that, given two nodes i
and j, eij ∈ EX if and only if i and j are in the same
cluster. Such an architecture helps reduce the overhead
caused by the negotiations. Figure 1 shows the reference
architecture of the network under examination. In this
Figure, SNi and CHj are communicating with their
neighbours.

Fig. 1. Architecture of the network. Solid lines represent
connections formed by the routing protocol; dashed lines
represent connections between negotiation nodes.

3.2 Task Model
We consider a single large application assigned to the
network for execution, which is decomposed into a set

of tasks. This application can be described as a DAG of
tasks GT = (T,ET ), where T = {1, . . . , λ, . . .Λ} is the set
of tasks, and ET = (evw) is the set of edges, with each
edge evw representing a unidirectional data transfer from
task v to task w. An example of the task DAG is depicted
in Figure 2. The gateway initially sends the application
graph GT to nodes, so that each node learns the relations
and dependencies between the tasks.

Fig. 2. Example of a task DAG.

A binary vector s(i) = [s(i, λ)], for λ ∈ T , can be
assigned to each node i in the network, where s(i, λ)
is a boolean value representing the current state of
node i corresponding to task λ, i.e. s(i, λ) = 1 when
node i is performing task λ. The vector s(i) is called
the task assignment strategy of node i. The state s(i, λ)
can only be set to 1 if and only if all its predecessor
tasks have been assigned to a node, i.e. s(i, λ) = 1 if
s(j, l) = 1, ∀l ∈ Tin(λ), where Tin(λ) are the ingress
tasks for task λ. With reference to Figure 2, Tin(T1) =
Tin(T2) = Tin(T3) = Tin(T5) = {}, hence they are source
tasks, Tin(T4) = {T1, T2, T3}, and Tin(T6) = {T4, T5}.

Since not every node may be able to perform each and
every task, a binary vector d(i) = (d(i, λ)) is defined,
where d(i, λ) = 1 if node i is able to perform task λ.
Note that s(i, λ) = 1 is possible only if d(i, λ) = 1, which
means that d(i, λ) ≥ s(i, λ).

During the execution of the proposed algorithm, two
sets of tasks are formed: the set of tasks Tprev =
{1, . . . , h, . . . ,H} that have been already assigned to
nodes and the set Tnext = {1, . . . , k, . . . ,K} of those tasks
that are yet to be assigned. This means that, for each
task h ∈ Tprev , there is a node i for which its state s(i, h)
is equal to 1. We assume that source tasks are already
assigned to the nodes by the gateway according to the
output required by the application. For example, if the
application requires the temperature measurement for a
certain area, source tasks correspond to the temperature
sensing for that area. In this case, the gateway assigns
these source tasks to the sensor nodes (SNs) that are
located in that area. Hence, initially, the set Tprev is
only populated with source tasks, i.e. with reference to
Figure 2, Tprev = {T1, T2, T3, T5} and Tnext = {T4, T6}.
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3.3 Energy Consumption
In this paper, two types of energy consumption at net-
work nodes are considered, namely processing energy
consumption and communication energy consumption.

Processing energy consumption eproc depends on two
quantities: the number of instructions, Iλ, needed to
execute a task, and the average energy consumption per
instruction einstr(i) at node i. Hence:

eproc(λ, i) = Iλ · einstr(i). (1)

There are two main components that contribute to
communication energy consumption: transmission and
reception energy consumption [20]. We define the energy
per bit necessary to transmit data at rate R from node i
to node j (one-hop neighbours) as etx(i, j), and the per-
bit energy consumed for reception of data at node j as
erx(j), which are calculated by:

etx(i, j) =
1

R

(
PT0i +

ϕij · δγij
ηi

)
,

erx(j) =
PR0j

R
,

(2)

where PT0i and PR0j are the power consumption com-
ponents of the transmitting and receiving circuitry for
node i and node j, respectively. ηi is the drain efficiency
of the power amplifier in i; ϕij is a coefficient that
is proportional to the minimum reception power and
depends on antenna characteristics; δij is the distance
between the transmitter and the receiver; and finally, γ
denotes the path loss component. These expressions are
described in more detail in [20].

4 THE TASK ASSIGNMENT MODEL

The aim of the optimization problem is to finding the
trade-off that best fits the requirements of both mini-
mizing the application completion time and maximizing
the network lifetime. However, this is an NP-hard prob-
lem [2][3], which could be exceedingly time and energy
consuming. For this reason, in this section, we use a non-
cooperative game model [21] for the task allocation prob-
lem in WSNs. Neighbouring nodes negotiate in order for
each node i to choose a task assignment strategy s(i) that
maximizes its own utility function.

4.1 Definitions
A non-cooperative game is defined by the tuple Γ =
〈X, {s(i), ui}i∈X〉, where a utility function ui is assigned
to node i ∈ X for the given strategy vector s(i). The goal
of each node is to maximize its own utility in a rational
way. Therefore, a strategy s∗(i) is preferred to a strategy
s(i) if and only if ui(s∗(i)) > ui(s(i)). For simplicity, we
denote S =

⋃
i∈X s(i) to refer to the strategy of all the

nodes in the network.
In the following, we consider each node i as char-

acterised by five parameters, which are described in
Table 1.

TABLE 1
Node parameters

Parameter Description

tinstr(i)
Time needed by node i to perform a
single instruction

einstr(i)
Energy spent by node i to perform a
single instruction

etx(i) = (etx(i, j))
Each element etx(i, j) of this vector is
the energy spent per bit to send data
from node i to an adjacent node j

erx(i) Per bit reception energy at node i
eres(i) Residual energy of node i

4.2 Task Utility Function

The TAN algorithm decides which particular node
should execute a given task k by maximizing a task utility
function over the set Tnext of unassigned nodes. The task
utility function for a generic task depends on the node
that is assigned to it. If no node is assigned to task k, its
utility value is 0, consistently with the fact that, if task
k is not assigned to any node to be executed, there is no
utility associated with it. If task k is assigned to node
i, its utility value is proportional to the utility that the
network has if task k is executed by node i. In particular,
this utility is in inverse proportion with the time needed
by node i to complete task k, and with the reduction in
lifetime due to this execution. Therefore, the task utility
function is given by:

uk(S) = max
i∈X

{[
Ωt(i, k) +

α

NF (k)
· Ωτ (i, k,S)

]
· s(i, k)

}
,

(3)

where Ωt(i, k) is the task completion time component of
task k when it is performed by node i, Ωτ (i, k,S) is
the network lifetime component when task k is performed
by node i according to the strategy S, NF (k) is a
normalization factor that eliminates the difference in
magnitude between the task completion time and the
network lifetime values, and α > 0 is a weighting factor.

4.2.1 Task Completion Time Component

As defined in Section 3.2, the set Tnext is formed of those
tasks that are to be assigned to nodes for execution. Each
task k ∈ Tnext is characterized by two parameters:

1) the deadline for successfully completing a task,
td(k);

2) the number of required instructions, I(k).
We express the task completion time component as:

Ωt(i, k) =
td(k)− tc(i, k)

td(k)
, (4)

where tc(i, k) is the completion time if task k is per-
formed by node i, which is defined as:

tc(i, k) =

{
I(k) · tinstr(i), if tc(i, k) ≤ td(k)

td(k), if tc(i, k) > td(k)
.
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4.2.2 Network Lifetime Component

This component is defined as follows:

Ωτ (i, k,S) = Fp(i, k) + Ftx(i, k,S), (5)

where Fp(i, k) is the component related to the change in
network lifetime due to the processing cost needed to
perform task k in node i. This component is defined as:

Fp(i, k) = −I(k) · einstr(i)
eres(i)

. (6)

Note that, since data processing entails a certain
amount of energy consumption, Fp(i, k) cannot increase
task k’s utility, and thus it needs to be negative in order
to decrement the utility of node i when task k is executed
at node i.

The term Ftx(i, k,S) in Equation 5 is related to the
change in network lifetime due to the transmission (and
reception) of the necessary data for task k to node i,
i.e. it represents communication costs in the task utility
function. Let pi→j = {(i, a), (a, b), . . . , (e, f), (f, j)} be the
routing path that connects node i to node j, and HL be
a hierarchically higher-level node for nodes i and j. The
transmission term is then:

Ftx(i, k,S) = −Ctx(pi→HL, k)

+
∑

l∈Tin(k)

∑
j∈X

{
Ctx(pj→HL, l)− Ctx(pj→i, l)

}
· s(j, l),

(7)

where

Ctx(pi→j , k) =
∑

(x,y)∈pi→j

(
erx(y)

eres(y)
+
etx(x, y)

eres(x)

)
· n(k).

(8)
In Equation 8, Ctx(pi→j , k) is the cost to transmit (and
receive) data from node i to node j, and n(k) is the num-
ber of output bits for task k. The difference operation is
due to the fact that the difference in lifetime between
two cases is considered: in the first case, task k is not
performed, and input data for task k are sent directly to
the higher-level node. In the second case, input data for
task k are sent to node i where task k is performed, and
then the output is sent to the hierarchically higher-level
node. Note that, contrary to the processing component
Fp(i, k) (Equation 6) that is always negative, the trans-
mission component Ftx(i, k,S) (Equation 7) may also be
positive, increasing the task utility function (Equation 3)
and making it more convenient to perform task k at node
i rather than delegating the processing job to the higher-
level node.

4.2.3 Normalization factor NF (k)

In Equation 3, the normalization factor NF (k) is intro-
duced so as to make the magnitudes of the network life-
time and task completion time components comparable
to each other. Since NF (k) is independent from the task
assignment strategy, its value can be computed offline

before the negotiation starts. The normalization factor is
computed by:

NF (k) =
Ωτ (k)

Ωt(k)
, (9)

where Ωτ (k) and Ωt(k) are the mean values of Ωτ (i, k,S)
and Ωt(i, k), computed over all nodes i ∈ X .

4.2.4 Weighting factor α
The parameter α introduced in Equation 3 is a coefficient
of the network lifetime component in the task utility
function. If α tends to 0, the utility function is mostly
influenced by the task completion time component; the
higher its value is, the more the changes in the network
lifetime component are reflected by the utility func-
tion. Clearly, if α tends to 1, the task completion time
component Ωt(i, k) and the network lifetime component
Ωτ (i, k,S) have comparable magnitudes, and therefore
comparable influences on the utility function.

4.3 Network Utility Function
Given the task utility function defined in Equation 3, the
network utility function is defined as the sum of all task
utility functions for those tasks that are not yet assigned
to nodes:

ug(S) =
∑

k∈Tnext

uk(S). (10)

This equation implies that the network utility function
is maximized when the sum is maximized. However,
this is only possible if all the nodes in the network
could communicate with each other. The communication
overhead resulting from a negotiation of this type would
entail an additional transmission cost that would counter
the benefit of the maximisation itself, particularly for
large networks. For this reason, we choose to let each
node negotiate only with its neighbours, achieving a
sub-optimal but computationally more efficient solution.
Hence, the definition of a node utility function is required.

4.4 Node Utility Function
The node utility function must be defined in such a way
that any increment in its value must correspond to an
equivalent increment in the network utility function of
Equation 10. In doing so, an approximation based on
local negotiations can be obtained, without the need for
network-wide negotiations. The node utility function ui
can then be written as an aggregation of the marginal
contributions umark (s(i)) of node i to each task k (and
therefore to the network utility function) given by:

ui(s(i)) =
∑

k∈Tnext

umark (s(i)). (11)

The marginal contribution is defined as a Wonderful
Life Utility (WLU) in [22]. WLU is the difference between
the task utility for a given node strategy s(i) and the
task utility for the null strategy s0(i), in which all the
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elements are equal to 0, i.e. the node is not contributing
to any task. The marginal utility umark of node i to task
k is then computed by:

umark (s(i)) = uk(s(i))− uk(s0(i)). (12)

Note that marginal utility is null when the node is not
contributing to the task as a part of its strategy.

From Equation 12, we can infer that the marginal
contribution of node i to task k is not null only if the
node is contributing to the task. Furthermore, since the
network utility function in Equation 10 is a summation
of task utility functions (Equation 3), a node contributes
to the network utility when it contributes to at least one
task. Therefore, a change in node i’s strategy s(i) that
increases its utility entails the same increment in the
network utility. This property is particularly desirable
because it implies that the game under consideration is
a potential game [9], where the potential function is given
by the network utility function. A consequence is that
this game has at least one pure Nash equilibrium [9]1.
Furthermore, potential games have the Finite Improve-
ment Property: every sequence of changes in the strategy
that improves the network utility converges to a Nash
equilibrium in finite time2.

5 TAN ALGORITHM

The aim of the TAN algorithm is to maximize the net-
work utility function given by Equation 10. To achieve
this, individual node utility functions are maximized
by means of a negotiation accomplished by neigh-
bouring nodes. The negotiation is based on a greedy
search algorithm, called Distributed Stochastic Algo-
rithm (DSA) [23], which is proved [24] to provide a
solution more quickly than existing algorithms, such as
Distributed Breakout Algorithm (DBA) [23] and Max-
imal Gain Messaging (MGM) [25]. Before introducing
TAN in detail, it is essential to explain DSA, which is
next.

5.1 DSA
DSA belongs to the family of well known greedy lo-
cal search algorithms for the solution of distributed
constraint optimization problems. These kind of algo-
rithms do not require any global control mechanisms,
and agents involved in the optimization only need in-
formation about themselves and their neighbours. This
ensures a low computational complexity and commu-
nication cost. Past studies compared local greedy search
algorithms, and proved that DSA converges to a solution
faster than existing algorithms such as DBA [23] and
MGM [25].

1. Pure Nash equilibria are characterised by a unique outcome,
contrary to mixed Nash equilibria where the outcome is stochastically
variable.

2. This property ensures that many simple adaptive processes, such
as the Distributed Stochastic Algorithm (DSA) [23], converge to Nash
equilibria.

DSA pseudo-code is provided in Algorithm 1. At each
time step t, each node that changed its strategy in the
previous time step t − 1, sends to all other involved
nodes a strategy update message (SUM) which contains its
new strategy s∗(i). A random number generator rand()
assigns a value to parameter v (see Algorithm 1). If
a node receives a SUM and if the value v is higher
than a given probability p, then a new strategy s(i)
that maximizes its own utility ui(s(i)) (Equation 11)
is computed. The probability value p is known as the
degree of parallel executions. The value of p affects the
performance of DSA: the higher it is, the higher the
probability that all nodes simultaneously change their
strategies, which increases the communication costs and
the algorithm’s convergence time. On the other hand,
low values may lead to a large convergence time, due
to less frequent changes in node strategies. Once the
utility is computed, if it is already maximized by the
current strategy, no further changes occur at step t. DSA
terminates when no new SUMs are received within the
last twait seconds. This occurs when the value of the
counter variable of Algorithm 1 exceeds twait. counter
represents the number of seconds since the last SUM
message.

Algorithm 1 DSA for node i
1: while counter < twait do
2: if s∗(i) was found at t− 1 < t then
3: broadcast a SUM to all neighbours
4: end if
5: if a SUM has been received then
6: counter ← 0
7: v ← rand()
8: if v > p then
9: find s(i) that maximizes ui(s(i))

10: if ui(s(i)) > ui(s
∗(i)) then

11: s∗(i)← s(i)
12: end if
13: end if
14: else
15: counter ← counter + tstep
16: end if
17: end while

5.2 TAN
The TAN algorithm consists of the whole procedure to
assign the tasks in Tnext to the nodes in X , in order to
maximize the network utility function ug(S). In fact, the
highest value of the network utility function corresponds
to the highest utility that the network has with reference
to the strategy of the network, i.e. the task assignment to
network nodes. In other words, TAN finds the network
strategy that ensures the best outcome in terms of task
completion time and network lifetime.

At each step of the algorithm, some nodes in the
network hold some data, on which some tasks in Tnext
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need to be performed. These nodes first exchange the
information required for DSA with their neighbouring
nodes. Then, all the nodes in the involved neighbour-
hoods run DSA until a suitable strategy for all nodes
is found. Finally, tasks are performed according to the
strategy determined with DSA, and processed data are
sent to the higher-level node.

The pseudo-code of TAN is provided in Algorithm 2.
The algorithm starts as soon as source tasks are per-
formed, and runs until the set Tnext is empty, i.e. there
are no remaining tasks to be performed. Let Xdata be the
set of nodes that have some output data. Initially, Xdata

is the set of nodes that have just performed the source
tasks. If the set Tnext is not empty, i.e. if there are some
remaining processing tasks that can be performed on
the data, then each node i ∈ Xdata sends an information
message (INFO) to its neighbours, n(i). All the nodes in
n(i) reply by sending an INFO message with their own
information to their neighbours.

An INFO message includes:
1) s(i), einstr(i), etx(i), eres(i) (see Table 1).
2) The subset T ′prev ⊆ Tprev of tasks that are already

performed on the data that node i currently holds.
Note that initially the only tasks that are already per-
formed are source tasks, i.e. T ′prev is made of the source
tasks.

After all nodes exchange INFO messages with their
neighbours, the DSA algorithm is initiated at each node.
Once DSA converges, each node will have chosen the
strategy that maximizes the network utility function
ug(S) (Equation 10).

Once that the strategy is chosen, tasks need to be
executed by nodes according to their strategy, before
sending data to the higher level node. Let Xproc =
{x1proc, . . . , xkproc, . . . } be the sequence of nodes in n(i),
for which the strategy of node xkproc entails the ex-
ecution of processing task tkproc, and let Tproc =
{t1proc, . . . , tkproc, . . . } be the related sequence of process-
ing tasks to be performed. Here, the nodes in set Xproc

are ordered according to the order in which the tasks in
set Tproc need to be performed, i.e. task tkproc is in the set
Tin(tk+1

proc). Since a node can perform more than one task,
it is possible that two consecutive tasks tkproc and tk+1

proc are
executed by the same node, i.e. xkproc = xk+1

proc. Each node
xkproc first performs the task tkproc, and updates the sets
Tnext and Tprev accordingly. Then, if there are no other
tasks assigned to it, node xkproc sends a data message
(DATA) to node xk+1

proc, to perform task tproc
k+1. DATA

messages contain the set Tprev , along with the output
data resulting from task tproc

k.
When all the tasks in Tproc are performed, a DATA

message is sent to the higher-level node.
Figure 3 shows the sequence of the steps to perform

TAN, for a reference neighbourhood of 3 sensor nodes
and a cluster head. Each sketch corresponds to one of
the basic steps necessary to TAN execution. Node 2 is
the node that has task 1 output data. After the DSA

execution, tasks 2 and 3 are assigned to nodes 3 and 1,
respectively. Data is then sent to the cluster head, which
negotiates with their neighbours for the assignment of
task 4 that is still to be performed.

Algorithm 2 TAN
1: Source tasks are performed
2: while Tnext 6= {} do
3: for all i ∈ Xdata do
4: send INFO to all nodes in n(i)
5: for all j ∈ n(i) do
6: send INFO to all nodes in {{i, n(i)}\{j}}
7: end for
8: for all nodes in {i, n(i)} do
9: execute DSA

10: end for
11: for all xkproc ∈ Xproc do
12: perform tkproc
13: Tnext ← {Tnext\{tkproc}}
14: Tprev ← {Tprev, {tkproc}}
15: if xk+1

proc 6= xkproc then
16: send DATA to xk+1

proc

17: end if
18: end for
19: send DATA to the higher-level node
20: update Xdata

21: end for
22: end while

6 TAN COMPLEXITY ANALYSIS

In this Section, TAN algorithm complexity will be anal-
ysed in terms of computational complexity and message
complexity.

6.1 Computational Complexity of the Node Utility
Function Maximization

The maximization of the node utility function ui(s(i))
defined in Equation 11 is a Mixed Integer Linear Pro-
gramming problem (MILP) [26]. It is well known that
MILP problems are optimally solved using branch-and-
bound algorithms [27], which, in the worst case, have a
complexity that grows exponentially with respect to the
number of variables. Hence, the complexity of the node
utility function is related to the number of variables a
node uses to compute the function.

Note that the tasks in d(i) are node i’s variables
used for executing TAN. Hence, the number of variables
Nvars(i) of node i is equal to the number of tasks it needs
to execute, Ntask(i). 3 The number of node i’s tasks is
found by:

Nvars(i) =
∑

λ∈Tnext

d(i, λ).

3. A node i can only perform the tasks that are set in its vector d(i),
but not all tasks in Tprev .
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(a) Node 2 ∈ Xdata sends INFO (b) Neighbours send INFO (c) DSA execution

(d) Node 2 sends DATA to x1proc = 3 (e) Node x1proc = 3 sends DATA to
x2proc = 1

(f) Node x2proc = 1 sends DATA to the
CH

Fig. 3. Sequence of steps to perform TAN. Small nodes represent sensors, whereas the bigger ones are cluster heads
(CHs).

In the worst case, node i is able to perform all the tasks
in Tnext, and Tnext is equal to the number of processing
tasks in which the application is sub-divided. This means
that, in the worst case, Nvars is bounded by |T |. In
the worst case, the complexity of maximizing ui(s(i))
is equal to the complexity of performing an exhaustive
search among all possible combinations of processing
assignments, i.e. 2Nvars ·Noperations, where Noperations is
the number of operations needed to evaluate one node
utility function ui(s(i)) (Noperations ∼ 30). Note that
computational complexity can be considerably reduced
using sub-optimal heuristic algorithms, such as genetic
or tabu-search algorithms.

6.2 Message Complexity of the Node Utility Func-
tion Maximization

In this section, the message complexity caused by the ex-
change of INFO, SUM, and DATA messages is analysed.

INFO: The INFO message is broadcast within the clus-
ter by each node only once. Let Ncluster(i) be the number
of nodes within the cluster that node i belongs to, and
let n(INFO) be the number of bytes required for an
INFO message 4. The number of transmitted bytes due
to the exchange of INFO messages for each negotiation is
therefore Ncluster ·n(INFO). Typically, Ncluster is around
5− 10 [28].

SUM: During the negotiation, a SUM message, which
consists of |s(i)| boolean values, is broadcast within
the cluster whenever node i changes its strategy. Let
Nsteps be the number of steps taken until the negotiation
converges, and let n(SUM) be the number of bytes of a
SUM message. In the worst case, at every time step, each

4. n(INFO) consists of: |s(i)| boolean values, |{eins(i), etxi , e
res
i }|

numeric values, and |T ′
prev | identification values.

node in the cluster changes its strategy. Hence, the worst
case number of transmitted bytes for SUM messages
during each negotiation is Nsteps ·Ncluster · n(SUM).

DATA: After the negotiation process has converged,
a DATA message of n(DATA, k) bytes is sent to each
node xkproc ∈ Xproc (see Section 5.2), and then to the
higher-level node. The dependence of n(DATA, k) on
k is due to the fact that the number of bytes of the
output data varies based on which task tkproc is executed.
n(DATA, k) is proportional to both the amount of output
data generated by the processed tasks and the number
|Tprev| of identification values. In the worst case, each
node xkproc ∈ Xproc is different from the following one
xk+1
proc. Therefore, considering that the last DATA message

is sent to the higher-level node (HL), in the worst case,
the number of transmitted bytes due to DATA messages
for each negotiation is

∑
k∈{Xproc,HL} n(DATA, k).

As a result, the worst case number of transmitted bytes
sent during a single negotiation is:

n(negotiation) =Ncluster · n(INFO)+

Nsteps ·Ncluster · n(SUM)+∑
k∈{Xproc,HL}

n(DATA, k).
(13)

Considering the typical case of a network with a num-
ber of nodes per cluster Ncluster = 10 [28], and a number
of steps for the negotiation convergence Nsteps = 10 [23],
for 30 tasks n(INFO) ∼ 137, and n(SUM) ∼ 16.
Therefore, a typical value for the worst case amount
of transmitted data per negotiation is n(negotiation) '
2.9 kB +

∑
k∈{Xproc,HL} n(DATA, k).

The number of negotiations to perform TAN mainly
depends on the number of hierarchical levels of the
network. Suppose that, given an application, all the
source tasks are assigned to sensor nodes within the
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same cluster. After each negotiation, data are sent to the
higher level node. Calling L the number of hierarchical
levels, the number of negotiation is at most equal to L−1.
On the other hand, if, given an application, all the source
tasks are assigned to sensor nodes in different clusters,
the number of negotiations depends on the number of
sensing tasks as well. In the worst case, for each sensing
task a negotiation is performed in each hierarchical level
except the gateway. Therefore, calling M the number of
sensing tasks, the worst case number of negotiations is
(L− 1) ·M .

7 PERFORMANCE ANALYSIS

The proposed algorithm is tested on heterogeneous WSN
scenarios by MATLAB simulations. The main node pa-
rameters are listed in Table 2. More specifically, the
processing cost parameters found in [3][20], the radio fre-
quency parameters specified in [29], and IEEE 802.15.14
parameters listed in [30] are used. CHs and sensors
have different characteristics: CHs have a maximum
processing speed of 206 MHz and a residual energy of
4 kJ, while sensor nodes have a maximum processing
speed of 133 MHz and a residual energy of 2 kJ. The
randomly assigned heterogeneous node characteristics
are:
• non-uniform energy consumption rates: energy con-

sumption parameters are selected randomly in a
range from 60% to 140% of the mean values given
in Table 1,

• non-uniform initial energy levels: battery energy
level is assigned randomly from 20% to 100% of the
maximum battery capacity,

• non-uniform processing speeds at each node: pro-
cessing speed is set randomly from 60% to 100% of
the highest possible processing speed.

TABLE 2
Simulation parameters

Parameter Value
RF frequency 2400 MHz
Bit rate 250 kbps
Output power range ∼ [−24 0] dBm
Receiver sensitivity −94 dBm
PR0 59.2 mW
PT0 26.5 mW
η 50%
einstr 1 nJ
Packet header 12 bytes
Maximum payload 125 bytes
Processing speed of sensors 133 MHz
Processing speed of CHs 206 MHz
Initial energy of sensors 2 kJ
Initial energy of CHs 4 kJ

In the following, the energy consumption model is
presented. Then, the performance of the TAN algorithm
for two different scenarios are presented. Provided fig-
ures present average values over all network nodes.

7.1 Smart City Scenario
The scenario under examination is that of an urban
environment, where nodes are positioned along the
streets as shown in Figure 4. Solid markers represent
nodes equipped with sensors that measure the speeds
of passing-by vehicles, where each speed measurement
is represented by a double numerical value (64-bit long).
Each street segment is a cluster (as enclosed by a dashed
ellipse), where CHs are represented by empty markers.
CHs are more capable nodes than ordinary sensors (with
an initial battery charge twice higher than that of an
ordinary sensor), and are able to perform the necessary
tasks in their clusters, such as local management of
sensors as well as traffic aggregation. CHs do not collect
raw data, but process incoming data from the sensors in
their clusters.

Fig. 4. Sample topology for the Smart City Scenario. Solid
markers represent nodes equipped with speed sensors,
while empty markers are cluster heads. Clusters of sen-
sors are enclosed by dashed ellipses.

Suppose that a driver at point S in Figure 4 would
like to know the fastest route to point D, based on
the collected speed information from sensor nodes. For
each of the 89 sensing nodes, one speed sensing task
is assigned. Since the mean travelling time for each
street segment is needed, the collected speed values from
sensors in the same segment are used as input for a
mean speed computing task. Then, the output of the mean
speed computing tasks, all of which correspond to the
same segment, are given to as input to another task,
called the mean travelling time5 computing task, which
provides the mean value for that segment. To find the
best path, the sum of the mean travelling times of all

5. The mean travelling time is the ratio between the mean speed
value and the length value related to a segment street.
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the combinations of segments that can be consecutively
driven is required. This is done by the summation tasks.
Finally, the choice of best path task takes the summation
values related to two merging paths and returns the
lower value, i.e. the quicker path. The ordinary nodes
in Figure 4 are able to perform speed sensing and mean
speed computing tasks, whereas the CHs are able to
perform mean speed computing, mean travelling time
computing, summation, and choice of best path tasks.
Table 3 summarizes the tasks for this scenario.

TABLE 3
Tasks for the Smart City Scenario

Task Description Nodes

Speed
sensing

Senses the vehicles’ speed. One
speed sensing task is assigned to
each sensor node

Sensors

Mean speed
computing

Computes the average of the
speed values collected by speed
sensing tasks

Sensors,
CHs,
node S

Mean
travelling
time
computing

Takes the mean speed value related
to a single segment of a street and
returns the mean travelling time for
that segment

CHs,
node S

Summation
Calculates the sum of the mean
travelling times of two consecutive
segments of a street

CHs,
node S

Choice of
best path

Takes two summation values re-
lated to two merging paths and
chooses the fastest one

CHs,
node S

We simulated the described scenario and compared
the performance of the proposed algorithm with three
alternative approaches:

• Mechanism Central: All data is forwarded to and
processed by the gateway (Node S in Figure 4).

• Mechanism CO: Data are processed according to
a centralized lifetime optimization algorithm, de-
scribed in [2]. In this algorithm, the gateway knows
all the network and application characteristics. Ac-
cording to this information, the gateway assigns
tasks to nodes with the aim of reducing the network
energy consumption.

• Mechanism DLMA: Data are processed according to
the DLMA algorithm described in [6]. DLMA is a
distributed sub-optimal task assignment algorithm
which aims at improving network lifetime. Contrary
to TAN, it only takes into account network lifetime,
ignoring the application execution time.

In this way, TAN’s performance is evaluated with respect
to static task assignment (mechanism Central), dynamic
centralized optimal task assignment (mechanism CO),
and dynamic distributed sub-optimal task assignment
(mechanism DLMA). Note that, with reference to energy
consumption, Mechanism Central and Mechanism CO
are borderline cases. Even though in Mechanism Central
energy consumption is expected to be higher than TAN,
and no sub-optimal mechanisms could results in lower
energy consumption than Mechanism CO, results are
reported and compared to those cases with the aim of

evaluating how much TAN’s performance differs from
theirs.

The obtained results of these mechanisms for energy
consumption and application completion time are com-
pared to those obtained using TAN. Figure 5 shows the
percent gain of TAN over Central, CO, and DLMA. We
refer to these comparisons as TAN-Central, TAN-CO,
and TAN-DLMA.

(a) Energy conservation

(b) Completion time gain

Fig. 5. Percentage values of mean energy conservation
and completion time gain using TAN, as compared to
TAN-Central, TAN-DLMA, and TAN-CO, for different val-
ues of α.

Simulations are run for:
• α = 0: null network lifetime component;
• α = 1: comparable Ωt and Ωτ ;
• α = M , with M � 1: null task completion time

component.
Significant improvement (around 75%) in energy con-

servation is observed compared to Central. TAN also
provides up to 22% gain over Central in application
completion time. When compared to DLMA, TAN shows
moderate gains (up to 15%) in energy conservation, and
up to 26% gain in application completion time. Despite
the fact that CO is more energy-efficient than TAN
(∼ 12%), TAN achieves its highest gains in application
completion time with respect to CO (up to 35%).

Note that, contrary to TAN, the Central, CO, and
DLMA task assignment mechanisms do not take into
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account the task completion time6, so their performance
are the same irrespective of the value of α. For this rea-
son, the most significant results are those obtained when
the task completion time (see Equation 4) is negligible,
i.e. when α = M . Nevertheless, comparisons for non-
infinitesimal values of the task completion time (α = 0
and α = 1) are reported for completeness.

As expected, when α increases, which means that
the utility function is more in favour of the network
lifetime component, the energy conservation percentage
increases, while the completion time gain decreases. On
the contrary, when α decreases, the utility function is
in favour of the task completion time component, i.e.
the energy conservation percentage decreases, while the
completion time gain increases.

7.2 Random Network Scenarios
Apart from the Smart City Scenario of Figure 4, TAN
is also evaluated for networks with randomly deployed
sensors. Sensor locations are uniformly distributed over
a rectangular topology, with two key parameters: node
deployment density and average number of nodes per
cluster.

The DAG of the application assigned to each network
is obtained by starting with a set of tasks and then
randomly appending the remaining tasks, while ensur-
ing the structure is still a DAG. While doing so, the
total number of tasks is fixed. The number of instruc-
tions required to perform each task and the number of
output bits for each task are set randomly according
to a uniform distribution from 2.7 · 105 to 3.3 · 105,
and from 720 bits to 880 bits, respectively [31]. The
application deadline is fixed and is set to 80 ms [3]. The
ability of each node to perform a task7 (the values of
the elements corresponding to the tasks of each vector
d(i) described in Section 3.2) is assigned according to
a task distribution parameter. This parameter defines the
probability of each node to be able to perform a given
task8. Table 4 summarises the evaluation parameters.

TABLE 4
Characteristic Parameters Values for Realistic Random

Scenarios

Parameter Min Default Max
Node density [nodes/m2] 0.2 0.3 0.4
Number of nodes per cluster 5 15 25
Number of tasks 10 20 30
Distribution of tasks 10% 50% 100%

Note that the Smart City Scenario corresponds to a net-
work with a low node density of around 0.15 nodes/m2,

6. Recall that the task completion time is considered by TAN by
means of the task completion time component in Equation 3

7. In the following, the word task is referred to as tasks in Tnext at
the initial instant. Since sensing tasks do not affect TAN performance,
they are not considered as a critical parameter.

8. Note that this is different from d(i), which is a vector of boolean
values denoting the ability of node i to perform individual tasks, but
not the probability of the ability to execute the tasks.

a low number of nodes per cluster, which is around 8
nodes/cluster, a high number of tasks equal to 100, and
a very low task distribution parameter of about 6.9%. In
the following, the performance of TAN algorithm when
these parameters change is discussed and compared to
C, CO and DLMA. The results also include a comparison
between TAN and the mechanism in which all the data
are sent to the gateway and processed only by the
gateway (mechanism Central in the Smart City Scenario).
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Fig. 6. Average energy consumption and application
completion time for TAN, DLMA, CO, and Central task
assignment mechanisms for different node densities.

7.2.1 The Effect of Node Density
In this set of simulations, the aim is to observe the
algorithm performance when the inter-node distances
change due to the change in node deployment density.
Figure 6 shows how the averages of overall energy
consumption and application completion time change
when node density is altered, for different values of the
weighting factor α of Equation 3.

In Figure 6(a), since the network lifetime component
(Equation 5) depends on the hop distance to the higher
level node due to multihop data transmission, we ob-
serve an improvement in energy consumption when α
increases. For non-zero values of α, slight improvement
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in energy conservation is observed for increasing node
density. This is due to the fact that, when node density
increases, the energy consumption due to the message
exchanges of negotiations is lower. Note that when
α = 0, the network lifetime component is not taken into
account for choosing the best strategy, and this can be
observed in the flatness of the related curve.

In Figure 6(b), some improvement in application com-
pletion time is observed with increasing node density.
Although TAN (and all the other mechanisms) is outper-
formed by the optimal CO algorithm in terms of energy
consumption, a gain of up to ∼20 sec is achieved by
TAN when compared to CO, with respect to application
completion time.
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Fig. 7. Average energy consumption and application
completion time for TAN, DLMA, CO, and Central task
assignment mechanisms for different number of nodes
per cluster.

7.2.2 The Effect of the Number of Nodes in Clusters
The second set of simulations evaluates the effect of the
average number of nodes in a cluster on TAN’s perfor-
mance. In Figure 7, the overall energy consumption and
application completion time variations are shown with
respect to different values of α and different number of
nodes per cluster. It can be observed that the effect of

having more nodes in a cluster on TAN’s performance is
similar to what is observed for the effect of node density
increase. This can be attributed to the fact that TAN
is mostly affected by how many nodes fall in a clus-
ter’s boundary, which directly affects its task allocation
strategy. Note that TAN’s negotiations are performed
among neighbouring nodes within the same cluster. An
increment in density or nodes per cluster is equivalent
to an increasing node degree. This helps TAN refine the
quality of its negotiation results at each algorithm step
and eventually reduces algorithm convergence time and
the total energy consumption.

7.2.3 The Effect of the Number of Tasks
In order to evaluate TAN’s performance at processing
applications with different complexities, the number of
tasks in an application is varied, while keeping the
application deadline fixed. By doing so, the available
time per task is effectively reduced. This in turn affects
the application completion time component of Equation
1.

Figure 8 demonstrates the effect of the application
complexity. We observe a noticeable improvement in
both energy consumption and completion time when the
number of tasks increases from 10 to 20. This is due
to the fact that, for a low number of tasks such as 10,
the results for an optimized strategy can not be much
different from the case where all tasks are assigned to
the gateway. One observation in Figure 8(b) is that TAN
provides the shortest application completion times for
all studied cases of application complexity. TAN with
α = 0 has a high consumption due to the fact that when
α = 0 the network lifetime component is not considered
in Equation 3. Among all, CO has the least consumption,
thanks to its ability to find the optimal solution with
respect to the average energy consumption.

7.2.4 The Effect of the Task Distribution Parameter
In the last set of simulations, the effect of the task
distribution parameter is studied. Recall that this value
corresponds to the probability of a node to be able to
perform a task. Figure 9 shows TAN performance of
the algorithms. Noticeable improvement both in overall
energy consumption and in application completion time
using TAN is noticed when it is possible to assign more
tasks to nodes, and the best results are obtained when
the network is able to perform every task.

In the Smart City Scenario, the task distribution pa-
rameter is set to 6.9%, which is extremely low when
compared to those of the random network scenarios.
Nevertheless, the performance of TAN in random net-
works is worse compared to that in the Smart City
scenario. This is due to the fact that, for the Smart
City scenario, the ability of each node to perform a
task is strictly related to the task (as opposed to being
randomly assigned). Therefore, only the nodes that are
more suitable to perform a given task have the ability to
execute that task.
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Fig. 8. Average energy consumption and application
completion time for TAN, DLMA, CO, and Central task
assignment mechanisms for different number of tasks.

8 CONCLUSIONS

In this paper, we propose TAN, a distributed algorithm
for dynamic task assignment in heterogenous WSNs,
which aims at maximizing network lifetime while en-
suring that application completion time is as short as
possible. TAN is tested in two reference scenarios: (i) a
Smart City environment, and (ii) a set of random sce-
narios with different characteristics. TAN has shown
to outperform gateway-oriented and DLMA-oriented
mechanisms in terms of both energy conservation and
application completion time. TAN is only outperformed
in terms of energy conservation by the tested centralized
algorithm, which however is considerably more complex
and cannot meet application deadlines due to its long
application completion time.

In all scenarios, the average node energy consumption
using TAN is found to be inversely proportional to a
weighting factor α that strikes the balance between two
conflicting goals: a long network lifetime and a short
application completion time. In particular, the α value
is found to be more critical for scenarios with complex
applications, where the application deadline is more
likely to be missed.
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Fig. 9. Average energy consumption and application
completion time for TAN, DLMA, CO, and Central task
assignment mechanisms for different values of the task
distribution parameter.

TAN characteristics make it perfectly suitable not only
for WSNs, but also for multi-technology IoT scenarios.
Using TAN, the adaptive IoT network components co-
operate dynamically in order to achieve optimal per-
formance. Furthermore, with little changes to the task
utility function, other requirements such as Quality of
Service (QoS) may be optimized.
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