137 research outputs found

    Benthic meiofaunal community response to the cascading effects of herbivory within an algal halo system of the Great Barrier Reef

    Get PDF
    © 2018 Ollivier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Benthic fauna play a crucial role in organic matter decomposition and nutrient cycling at the sediment-water boundary in aquatic ecosystems. In terrestrial systems, grazing herbivores have been shown to influence below-ground communities through alterations to plant distribution and composition, however whether similar cascading effects occur in aquatic systems is unknown. Here, we assess the relationship between benthic invertebrates and above-ground fish grazing across the ‘grazing halos’ of Heron Island lagoon, Australia. Grazing halos, which occur around patch reefs globally, are caused by removal of seagrass or benthic macroalgae by herbivorous fish that results in distinct bands of unvegetated sediments surrounding patch reefs. We found that benthic algal canopy height significantly increased with distance from patch reef, and that algal canopy height was positively correlated with the abundances of only one invertebrate taxon (Nematoda). Both sediment carbon to nitrogen ratios (C:N) and mean sediment particle size (?m) demonstrated a positive correlation with Nematoda and Arthropoda (predominantly copepod) abundances, respectively. These positive correlations indicate that environmental conditions are a major contributor to benthic invertebrate community distribution, acting on benthic communities in conjunction with the cascading effects of above-ground algal grazing. These results suggest that benthic communities, and the ecosystem functions they perform in this system, may be less responsive to changes in above-ground herbivorous processes than those previously studied in terrestrial systems. Understanding how above-ground organisms, and processes, affect their benthic invertebrate counterparts can shed light on how changes in aquatic communities may affect ecosystem function in previously unknown ways

    Carbon sequestration by Australian tidal marshes

    Get PDF
    Australia's tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia's tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha-1 (range 14-963 Mg OC ha-1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha-1 yr -1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia's 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2 -equivalent value of USD7.19billion.Annualsequestrationis0.75TgOCyr−1,withaCO2−equivalentvalueofUSD7.19 billion. Annual sequestration is 0.75 Tg OC yr -1, with a CO2 -equivalent value of USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes

    Astronomical Spectroscopy

    Full text link
    Spectroscopy is one of the most important tools that an astronomer has for studying the universe. This chapter begins by discussing the basics, including the different types of optical spectrographs, with extension to the ultraviolet and the near-infrared. Emphasis is given to the fundamentals of how spectrographs are used, and the trade-offs involved in designing an observational experiment. It then covers observing and reduction techniques, noting that some of the standard practices of flat-fielding often actually degrade the quality of the data rather than improve it. Although the focus is on point sources, spatially resolved spectroscopy of extended sources is also briefly discussed. Discussion of differential extinction, the impact of crowding, multi-object techniques, optimal extractions, flat-fielding considerations, and determining radial velocities and velocity dispersions provide the spectroscopist with the fundamentals needed to obtain the best data. Finally the chapter combines the previous material by providing some examples of real-life observing experiences with several typical instruments.Comment: An abridged version of a chapter to appear in Planets, Stars and Stellar Systems, to be published in 2011 by Springer. Slightly revise

    The Real Gauge Singlet Scalar Extension of Standard Model: A Possible Candidate of Cold Dark Matter

    Full text link
    We consider a simplest extension of Standard Model in which a real SM gauge singlet scalar with an additional discrete symmetry Z2Z_2 is introduced to SM. This additional scalar can be a viable candidate of cold dark matter since the stability of SS is achieved by the application of Z2Z_2 symmetry on SS. Considering SS as a possible candidate of cold dark matter we have solved Boltzmann's equation to find the freeze out temperature and relic density of SS for Higgs mass 120 GeV in the scalar mass range 5 GeV to 1 TeV. As HHSSHHSS coupling δ2\delta_2 appearing in Lagrangian depends upon the value of scalar mass mSm_S and Higgs mass mhm_h, we have constrained the mS−δ2m_S - \delta_2 parameter space by using the WMAP limit on the relic density of dark matter in the universe and the results of recent ongoing dark matter direct search experiments namely CDMS-II, CoGeNT, DAMA, EDELWEISS-II, XENON-10, XENON-100. From such analysis we find two distinct mass regions (a lower and higher mass domain) for such a dark matter candidate that satisfy both the WMAP limit and the experimental results considered here. We have estimated the possible differential direct detection rates and annual variation of total detection rates for this scalar dark matter candidate SS for two detector materials namely Ge, Xe. Finally we have calculated the γ−\gamma-ray flux from the galactic centre due to annihilation of two 130 GeV scalar dark matter into two monoenergetic γ−\gamma-rays.Comment: 21 pages, New calculations, figures and references adde

    A marine heat wave drives massive losses from the world\u27s largest seagrass carbon stocks.

    Get PDF
    Seagrass ecosystems contain globally significant organic carbon (C) stocks. However, climate change and increasing frequency of extreme events threaten their preservation. Shark Bay, Western Australia, has the largest C stock reported for a seagrass ecosystem, containing up to 1.3% of the total C stored within the top metre of seagrass sediments worldwide. On the basis of field studies and satellite imagery, we estimate that 36% of Shark Bay’s seagrass meadows were damaged following a marine heatwave in 2010/2011. Assuming that 10 to 50% of the seagrass sediment C stock was exposed to oxic conditions after disturbance, between 2 and 9 Tg CO2 could have been released to the atmosphere during the following three years, increasing emissions from land-use change in Australia by 4–21% per annum. With heatwaves predicted to increase with further climate warming, conservation of seagrass ecosystems is essential to avoid adverse feedbacks on the climate system

    Insulin Resistance is Associated with Increased Levels of Cerebrospinal Fluid Biomarkers of Alzheimer's Disease and Reduced Memory Function in At-Risk Healthy Middle-Aged Adults

    Get PDF
    BACKGROUND: Type 2 diabetes is associated with an increased risk for Alzheimer’s disease (AD). Regulation of normal insulin function may be important in reducing the prevalence of dementia due to AD, particularly in individuals who harbor genetic risk for or have a parental family history of AD. The relationship between insulin resistance (IR) and AD pathology remains poorly understood, particularly in midlife prior to the onset of clinical metabolic disease or cognitive decline. // OBJECTIVE: We examined associations between IR as indexed by HOMA-IR, cerebrospinal fluid (CSF) biomarkers of AD pathology, and memory in middle-aged adults enriched for AD. We postulated that higher HOMA-IR and APOE ɛ4 carriage would be associated with greater CSF AD pathology and poor memory performance. // METHODS: Cognitively asymptomatic middle-aged adults (N = 70, mean age = 57.7 years) from the Wisconsin Alzheimer’s Disease Research Center with a parental family history of dementia due to AD underwent lumbar puncture, blood draw, and neuropsychological testing. CSF AD biomarkers including soluble amyloid-β protein precursor β (sAβPPβ), amyloid-β42 (Aβ42), and phosphorylated tau (P-tau181) were examined with respect to HOMA-IR and APOE ɛ4 status. Delayed memory performance was examined with respect to HOMA-IR, CSF AD biomarkers, and APOE ɛ4 status. // RESULTS: Higher HOMA-IR was associated with higher sAβPPβ and Aβ42 . APOE ɛ4 carriers had significantly higher levels of sAβPPα, sAβPPβ, and P-tau181/Aβ42 compared to noncarriers. The concurrent presence of higher HOMA-IR and CSF AD pathology predicted worse delayed memory performance. // CONCLUSION: Overall, the findings suggest that IR and APOE ɛ4 are contributing factors to the development of AD pathology in midlife, and provide support for targeting insulin function as a potentially modifiable risk factor for AD

    The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic chagasic cardiomyopathy is a debilitating and frequently fatal outcome of human infection with the protozoan parasite, <it>Trypanosoma cruzi</it>. Microarray analysis of gene expression during the <it>T. cruzi </it>life-cycle could be a valuable means of identifying drug and vaccine targets based on their appropriate expression patterns, but results from previous microarray studies in <it>T. cruzi </it>and related kinetoplastid parasites have suggested that the transcript abundances of most genes in these organisms do not vary significantly between life-cycle stages.</p> <p>Results</p> <p>In this study, we used whole genome, oligonucleotide microarrays to globally determine the extent to which <it>T. cruzi </it>regulates mRNA relative abundances over the course of its complete life-cycle. In contrast to previous microarray studies in kinetoplastids, we observed that relative transcript abundances for over 50% of the genes detected on the <it>T. cruzi </it>microarrays were significantly regulated during the <it>T. cruzi </it>life-cycle. The significant regulation of 25 of these genes was confirmed by quantitative reverse-transcriptase PCR (qRT-PCR). The <it>T. cruzi </it>transcriptome also mirrored published protein expression data for several functional groups. Among the differentially regulated genes were members of paralog clusters, nearly 10% of which showed divergent expression patterns between cluster members.</p> <p>Conclusion</p> <p>Taken together, these data support the conclusion that transcript abundance is an important level of gene expression regulation in <it>T. cruzi</it>. Thus, microarray analysis is a valuable screening tool for identifying stage-regulated <it>T. cruzi </it>genes and metabolic pathways.</p

    Structural Elements Regulating Amyloidogenesis: A Cholinesterase Model System

    Get PDF
    Polymerization into amyloid fibrils is a crucial step in the pathogenesis of neurodegenerative syndromes. Amyloid assembly is governed by properties of the sequence backbone and specific side-chain interactions, since fibrils from unrelated sequences possess similar structures and morphologies. Therefore, characterization of the structural determinants driving amyloid aggregation is of fundamental importance. We investigated the forces involved in the amyloid assembly of a model peptide derived from the oligomerization domain of acetylcholinesterase (AChE), AChE586-599, through the effect of single point mutations on β-sheet propensity, conformation, fibrilization, surfactant activity, oligomerization and fibril morphology. AChE586-599 was chosen due to its fibrilization tractability and AChE involvement in Alzheimer's disease. The results revealed how specific regions and residues can control AChE586-599 assembly. Hydrophobic and/or aromatic residues were crucial for maintaining a high β-strand propensity, for the conformational transition to β-sheet, and for the first stage of aggregation. We also demonstrated that positively charged side-chains might be involved in electrostatic interactions, which could control the transition to β-sheet, the oligomerization and assembly stability. Further interactions were also found to participate in the assembly. We showed that some residues were important for AChE586-599 surfactant activity and that amyloid assembly might preferentially occur at an air-water interface. Consistently with the experimental observations and assembly models for other amyloid systems, we propose a model for AChE586-599 assembly in which a steric-zipper formed through specific interactions (hydrophobic, electrostatic, cation-π, SH-aromatic, metal chelation and polar-polar) would maintain the β-sheets together. We also propose that the stacking between the strands in the β-sheets along the fiber axis could be stabilized through π-π interactions and metal chelation. The dissection of the specific molecular recognition driving AChE586-599 amyloid assembly has provided further knowledge on such poorly understood and complicated process, which could be applied to protein folding and the targeting of amyloid diseases
    • …
    corecore