39 research outputs found

    Supersymmetric Large Extra Dimensions and the Cosmological Constant Problem

    Full text link
    This article briefly summarizes and reviews the motivations for - and the present status of - the proposal that the small size of the observed Dark Energy density can be understood in terms of the dynamical relaxation of two large extra dimensions within a supersymmetric higher-dimensional theory.Comment: Talk presented to Theory Canada I, Vancouver, June 2005. References added in V

    How Big Can Anomalous W Couplings Be?

    Full text link
    Conventional wisdom has it that anomalous gauge-boson self-couplings can be at most a percent or so in size. We test this wisdom by computing these couplings at one loop in a generic renormalizable model of new physics. (For technical reasons we consider the CP-violating couplings here, but our results apply more generally.) By surveying the parameter space we find that the largest couplings (several percent) are obtained when the new particles are at the weak scale. For heavy new physics we compare our findings with expectations based on an effective-lagrangian analysis. We find general patterns of induced couplings which robustly reflect the nature of the underlying physics. We build representative models for which the new physics could be first detected in the anomalous gauge couplings.Comment: 40 pages, 11 figures, (dvi file and figures combined into a uuencoded compressed file), (We correct an error in eq. 39 and its associated figure (9). No changes at all to the text.), McGill-93/40, UQAM-PHE-93/03, NEIPH-93-00

    Supersymmetric Large Extra Dimensions and the Cosmological Constant: An Update

    Full text link
    This article critically reviews the proposal for addressing the cosmological constant problem within the framework of supersymmetric large extra dimensions (SLED), as recently proposed in hep-th/0304256. After a brief restatement of the cosmological constant problem, a short summary of the proposed mechanism is given. The emphasis is on the perspective of the low-energy effective theory in order to see how it addresses the problem of why low-energy particles like the electron do not contribute too large a vacuum energy. This is followed by a discussion of the main objections, which are grouped into the following five topics: (1) Weinberg's No-Go Theorem. (2) Are hidden tunings of the theory required, and a problem? (3) Why should the mechanism not rule out earlier epochs of inflation? (4) How big are quantum effects, and which are the most dangerous? (5) Can the mechanism be consistent with cosmological constraints? It is argued that there are plausible reasons why the mechanism can thread the potential objections, but that a definitive proof that it does depends on addressing well-defined technical points. These points include identifying what fixes the size of the extra dimensions, checking how topological obstructions renormalize and performing specific calculations of quantum corrections. More detailed studies of these issues, which are well reach within our present understanding of extra-dimensional theories, are currently underway. As such, the jury remains out concerning the proposal, although the prospects for acquittal still seem good.Comment: 21 pages; an extended version of the contribution to the proceedings of SUSY 2003, University of Arizona, Tucson AZ, June 2003, which has also been updated to include developments since the conference. (v2 includes some updated references and corrects a minor error in the bulk loop section

    Charmless hadronic decays B→PP,PV,VVB \to PP, PV, VV and new physics effects in the general two-Higgs doublet models

    Get PDF
    Based on the low-energy effective Hamiltonian with the generalized factorization, we calculate the new physics contributions to the branching ratios of the two-body charmless hadronic decays of BuB_u and BdB_d mesons induced by the new gluonic and electroweak charged-Higgs penguin diagrams in the general two-Higgs doublet models (models I, II and III). Within the considered parameter space, we find that: (a) the new physics effects from new gluonic penguin diagrams strongly dominate over those from the new Îł\gamma- and Z0Z^0- penguin diagrams; (b) in models I and II, new physics contributions to most studied B meson decay channels are rather small in size: from -15% to 20%; (c) in model III, however, the new physics enhancements to the penguin-dominated decay modes can be significant, ∌(30−200)\sim (30 -200)%, and therefore are measurable in forthcoming high precision B experiments; (d) the new physics enhancements to ratios {\cal B}(B \to K \etap) are significant in model III, ∌(35−70)\sim (35 -70)%, and hence provide a simple and plausible new physics interpretation for the observed unexpectedly large B \to K \etap decay rates; (e) the theoretical predictions for B(B→K+π){\cal B}(B \to K^+ \pi) and B(B→K0π+){\cal B}(B \to K^0 \pi^+) in model III are still consistent with the data within 2σ2\sigma errors; (f) the significant new physics enhancements to the branching ratios of B→K0π0,K∗η,K∗+π−,K+ϕ,K∗0ω,K∗+ϕB \to K^0 \pi^0, K^* \eta, K^{*+} \pi^-, K^+ \phi, K^{*0} \omega, K^{*+} \phi and K∗0ϕK^{*0} \phi decays are helpful to improve the agreement between the data and the theoretical predictions; (g) the theoretical predictions of B(B→PP,PV,VV){\cal B}(B \to PP, PV, VV) in the 2HDM's are generally consistent with experimental measurements and upper limits (9090% C.L.)Comment: 55 pages, Latex file, 17 PS and EPS figures. With minor corrections, final version to be published in Phys.Rev. D. Repot-no: PKU-TH-2000-4

    Final-State Phases in Charmed Meson Two-Body Nonleptonic Decays

    Get PDF
    Observed decay rates indicate large phase differences among the amplitudes for the charge states in D→KˉπD \to \bar K \pi and D→Kˉ∗πD \to \bar K^* \pi but relatively real amplitudes in the charge states for D→KˉρD \to \bar K \rho. This feature is traced using an SU(3) flavor analysis to a sign flip in the contribution of one of the amplitudes contributing to the latter processes in comparison with its contribution to the other two sets. This amplitude may be regarded as an effect of rescattering and is found to be of magnitude comparable to others contributing to charmed particle two-body nonleptonic decays.Comment: 19 pages, latex, 4 figures, to be submitted to Phys. Rev.

    Towards a Naturally Small Cosmological Constant from Branes in 6D Supergravity

    Full text link
    We investigate the possibility of self-tuning of the effective 4D cosmological constant in 6D supergravity, to see whether it could naturally be of order 1/r^4 when compactified on two dimensions having Kaluza-Klein masses of order 1/r. In the models we examine supersymmetry is broken by the presence of non-supersymmetric 3-branes (on one of which we live). If r were sub-millimeter in size, such a cosmological constant could describe the recently-discovered dark energy. A successful self-tuning mechanism would therefore predict a connection between the observed size of the cosmological constant, and potentially observable effects in sub-millimeter tests of gravity and at the Large Hadron Collider. We do find self tuning inasmuch as 3-branes can quite generically remain classically flat regardless of the size of their tensions, due to an automatic cancellation with the curvature and dilaton of the transverse two dimensions. We argue that in some circumstances six-dimensional supersymmetry might help suppress quantum corrections to this cancellation down to the bulk supersymmetry-breaking scale, which is of order 1/r. We finally examine an explicit realization of the mechanism, in which 3-branes are inserted into an anomaly-free version of Salam-Sezgin gauged 6D supergravity compactified on a 2-sphere with nonzero magnetic flux. This realization is only partially successful due to a topological constraint which relates bulk couplings to the brane tension, although we give arguments why these relations may be stable against quantum corrections.Comment: 31 pages, 1 figure. Uses JHEP class. Expanded discussions in Introduction, Section 3.2 (Quantum Corrections) and Section 4.2 (Topological Constraint). Note added on subsequent related articles. Results unchange

    Static quantities of the W boson in the SU_L(3) X U_X(1) model with right-handed neutrinos

    Full text link
    The static electromagnetic properties of the WW boson, ΔÎș\Delta \kappa and ΔQ\Delta Q, are calculated in the SU_L(3)} \times U_X(1) model with right-handed neutrinos. The new contributions from this model arise from the gauge and scalar sectors. In the gauge sector there is a new contribution from a complex neutral gauge boson Y0Y^0 and a singly-charged gauge boson Y±Y^\pm. The mass of these gauge bosons, called bileptons, is expected to be in the range of a few hundreds of GeV according to the current bounds from experimental data. If the bilepton masses are of the order of 200 GeV, the size of their contribution is similar to that obtained in other weakly coupled theories. However the contributions to both ΔQ\Delta Q and ΔÎș\Delta \kappa are negligible for very heavy or degenerate bileptons. As for the scalar sector, an scenario is examined in which the contribution to the WW form factors is identical to that of a two-Higgs-doublet model. It is found that this sector would not give large corrections to ΔÎș\Delta \kappa and ΔQ\Delta Q.Comment: New material included. Final version to apppear in Physical Review

    A Phenomenological Study of the Process e+e−→Ό+Ό−ΜlΜˉle^+e^-\to\mu^+\mu^-\nu_l\bar\nu_l at High Energy e+e−e^+e^- Colliders and Measurement of the ZWWZWW and ÎłWW\gamma WW Couplings

    Full text link
    We perform a detailed study of the process e+e−→Ό+Ό−ΜlΜˉle^+e^-\to \mu^+\mu^-\nu_l\bar\nu_l including all contributions. The contributions other than from real gauge boson production leads to a rich phenomenology. We explore the use of the process as a means of precision measurement of the ZWWZWW and ÎłWW\gamma WW vertices. We concentrate on LEP II energies, s=200\sqrt{s}=200 GeV, and energies appropriate to the proposed Next Linear Collider (NLC) high energy e+e−e^+e^- collider with center of mass energies s=500\sqrt{s}=500 and 1~TeV. At 200 GeV, the process offers, at best, a consistency check of other processes being considered at LEP200. At 500~GeV, the parameters ÎșÎł\kappa_\gamma, λγ\lambda_\gamma, ÎșZ\kappa_Z, and λZ\lambda_Z can be measured to about ±0.1\pm 0.1 or better at 95\% C.L. while at 1 TeV, they can be measured to about ±0.01\pm 0.01. At the high luminosities anticipated at high energy linear colliders precision measurements are likely to be limited by systematic rather than statistical errors.Comment: 33 pages, OCIP/C 93-18, UQAM-PHE-930

    Dimension-six CP-violating operators of the third-family quarks and their effects at colliders

    Get PDF
    We listed all possible dimension-six CP-violating SUc(3)×SUL(2)×UY(1)SU_c(3)\times SU_L(2)\times U_Y(1) invariant operators involving the third-family quarks, which can be generated by new physics at a higher energy scale. The expressions of these operators after electroweak symmetry breaking and the induced effective couplings WtbˉWt\bar b, XbbˉXb\bar b and XttˉXt\bar t (X=Z,γ,g,H)(X=Z,\gamma,g,H) are also presented. We have evaluated sample contributions of these operators to CP-odd asymmetries of transverse polarization of top quark in single top production at the upgraded Tevatron, the similar effect in top-antitop pair production at the NLC, and the CP-odd observables of momentum correlations among the top quark decay products at the NLC. The energy and luminosity sensitivity in probing these CP-violating new physics has also been studied.Comment: 24 pages, 2 figures adde

    The fully differential single-top-quark cross section in next-to-leading order QCD

    Get PDF
    We present a new next-to-leading order calculation for fully differential single-top-quark final states. The calculation is performed using phase space slicing and dipole subtraction methods. The results of the methods are found to be in agreement. The dipole subtraction method calculation retains the full spin dependence of the final state particles. We show a few numerical results to illustrate the utility and consistency of the resulting computer implementations.Comment: 37 pages, latex, 2 ps figure
    corecore