3,191 research outputs found

    Ambiguous model learning made unambiguous with 1/f priors

    Full text link
    What happens to the optimal interpretation of noisy data when there exists more than one equally plausible interpretation of the data? In a Bayesian model-learning framework the answer depends on the prior expectations of the dynamics of the model parameter that is to be inferred from the data. Local time constraints on the priors are insufficient to pick one interpretation over another. On the other hand, nonlocal time constraints, induced by a 1/f1/f noise spectrum of the priors, is shown to permit learning of a specific model parameter even when there are infinitely many equally plausible interpretations of the data. This transition is inferred by a remarkable mapping of the model estimation problem to a dissipative physical system, allowing the use of powerful statistical mechanical methods to uncover the transition from indeterminate to determinate model learning.Comment: 8 pages, 2 figure

    Parametric inference in the large data limit using maximally informative models

    Get PDF
    Motivated by data-rich experiments in transcriptional regulation and sensory neuroscience, we consider the following general problem in statistical inference. When exposed to a high-dimensional signal S, a system of interest computes a representation R of that signal which is then observed through a noisy measurement M. From a large number of signals and measurements, we wish to infer the "filter" that maps S to R. However, the standard method for solving such problems, likelihood-based inference, requires perfect a priori knowledge of the "noise function" mapping R to M. In practice such noise functions are usually known only approximately, if at all, and using an incorrect noise function will typically bias the inferred filter. Here we show that, in the large data limit, this need for a pre-characterized noise function can be circumvented by searching for filters that instead maximize the mutual information I[M;R] between observed measurements and predicted representations. Moreover, if the correct filter lies within the space of filters being explored, maximizing mutual information becomes equivalent to simultaneously maximizing every dependence measure that satisfies the Data Processing Inequality. It is important to note that maximizing mutual information will typically leave a small number of directions in parameter space unconstrained. We term these directions "diffeomorphic modes" and present an equation that allows these modes to be derived systematically. The presence of diffeomorphic modes reflects a fundamental and nontrivial substructure within parameter space, one that is obscured by standard likelihood-based inference.Comment: To appear in Neural Computatio

    Kerfuffle: a web tool for multi-species gene colocalization analysis

    Get PDF
    The evolutionary pressures that underlie the large-scale functional organization of the genome are not well understood in eukaryotes. Recent evidence suggests that functionally similar genes may colocalize (cluster) in the eukaryotic genome, suggesting the role of chromatin-level gene regulation in shaping the physical distribution of coordinated genes. However, few of the bioinformatic tools currently available allow for a systematic study of gene colocalization across several, evolutionarily distant species. Kerfuffle is a web tool designed to help discover, visualize, and quantify the physical organization of genomes by identifying significant gene colocalization and conservation across the assembled genomes of available species (currently up to 47, from humans to worms). Kerfuffle only requires the user to specify a list of human genes and the names of other species of interest. Without further input from the user, the software queries the e!Ensembl BioMart server to obtain positional information and discovers homology relations in all genes and species specified. Using this information, Kerfuffle performs a multi-species clustering analysis, presents downloadable lists of clustered genes, performs Monte Carlo statistical significance calculations, estimates how conserved gene clusters are across species, plots histograms and interactive graphs, allows users to save their queries, and generates a downloadable visualization of the clusters using the Circos software. These analyses may be used to further explore the functional roles of gene clusters by interrogating the enriched molecular pathways associated with each cluster.Comment: BMC Bioinformatics, In pres

    Utilizing RNA-Seq Data for Cancer Network Inference

    Full text link
    An important challenge in cancer systems biology is to uncover the complex network of interactions between genes (tumor suppressor genes and oncogenes) implicated in cancer. Next generation sequencing provides unparalleled ability to probe the expression levels of the entire set of cancer genes and their transcript isoforms. However, there are onerous statistical and computational issues in interpreting high-dimensional sequencing data and inferring the underlying genetic network. In this study, we analyzed RNA-Seq data from lymphoblastoid cell lines derived from a population of 69 human individuals and implemented a probabilistic framework to construct biologically-relevant genetic networks. In particular, we employed a graphical lasso analysis, motivated by considerations of the maximum entropy formalism, to estimate the sparse inverse covariance matrix of RNA-Seq data. Gene ontology, pathway enrichment and protein-protein path length analysis were all carried out to validate the biological context of the predicted network of interacting cancer gene isoforms.Comment: 4 pages, 2 figures, 2 tables, conference GENSIPS' 1

    Occupational therapists' perceptions of predischarge home assessments with older adults in acute care

    Get PDF
    Predischarge occupational therapy home assessments are routinely performed with older adults in Europe, Australia and North America. Their primary aim is to facilitate a timely and safe discharge from hospital. However, there is a lack of published research on this topic, especially studies exploring occupational therapists' perceptions of home assessments. The paper aims to redress this by describing occupational therapists' perceptions of predischarge occupational therapy home assessments with older adults in acute care. All occupational therapists who undertook home assessments in an acute care hospital with older adults during the duration of the study period were invited to complete a reflective diary. In total, 15 reflective diaries were completed by six therapists. The data were analysed using thematic content analysis. The findings suggest that home assessments were carried out because of mobility or environmental concerns. Satisfaction and dissatisfaction with the outcome of the home assessment were related to the incidents that occurred during the assessment. Some of the occupational therapists' anxieties were related to the older adults' level of functioning or ill health, and the older adults' own concerns did have an impact upon the therapists' expectations of the home assessment process

    Dynamic plasticity in coupled avian midbrain maps

    Get PDF
    Internal mapping of the external environment is carried out using the receptive fields of topographic neurons in the brain, and in a normal barn owl the aural and visual subcortical maps are aligned from early experiences. However, instantaneous misalignment of the aural and visual stimuli has been observed to result in adaptive behavior, manifested by functional and anatomical changes of the auditory processing system. Using methods of information theory and statistical mechanics a model of the adaptive dynamics of the aural receptive field is presented and analyzed. The dynamics is determined by maximizing the mutual information between the neural output and the weighted sensory neural inputs, admixed with noise, subject to biophysical constraints. The reduced costs of neural rewiring, as in the case of young barn owls, reveal two qualitatively different types of receptive field adaptation depending on the magnitude of the audiovisual misalignment. By letting the misalignment increase with time, it is shown that the ability to adapt can be increased even when neural rewiring costs are high, in agreement with recent experimental reports of the increased plasticity of the auditory space map in adult barn owls due to incremental learning. Finally, a critical speed of misalignment is identified, demarcating the crossover from adaptive to nonadaptive behavior

    Prediction of light aircraft interior sound pressure level using the room equation

    Get PDF
    The room equation is investigated for predicting interior sound level. The method makes use of an acoustic power balance, by equating net power flow into the cabin volume to power dissipated within the cabin using the room equation. The sound power level transmitted through the panels was calculated by multiplying the measured space averaged transmitted intensity for each panel by its surface area. The sound pressure level was obtained by summing the mean square sound pressures radiated from each panel. The data obtained supported the room equation model in predicting the cabin interior sound pressure level

    Equitability, mutual information, and the maximal information coefficient

    Get PDF
    Reshef et al. recently proposed a new statistical measure, the "maximal information coefficient" (MIC), for quantifying arbitrary dependencies between pairs of stochastic quantities. MIC is based on mutual information, a fundamental quantity in information theory that is widely understood to serve this need. MIC, however, is not an estimate of mutual information. Indeed, it was claimed that MIC possesses a desirable mathematical property called "equitability" that mutual information lacks. This was not proven; instead it was argued solely through the analysis of simulated data. Here we show that this claim, in fact, is incorrect. First we offer mathematical proof that no (non-trivial) dependence measure satisfies the definition of equitability proposed by Reshef et al.. We then propose a self-consistent and more general definition of equitability that follows naturally from the Data Processing Inequality. Mutual information satisfies this new definition of equitability while MIC does not. Finally, we show that the simulation evidence offered by Reshef et al. was artifactual. We conclude that estimating mutual information is not only practical for many real-world applications, but also provides a natural solution to the problem of quantifying associations in large data sets
    corecore