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How should one quantify the strength of association between two
random variables without bias for relationships of a specific form?
Despite its conceptual simplicity, this notion of statistical “equita-
bility” has yet to receive a definitive mathematical formalization.
Here we argue that equitability is properly formalized by a self-
consistency condition closely related to Data Processing Inequality.
Mutual information, a fundamental quantity in information the-
ory, is shown to satisfy this equitability criterion. These findings
are at odds with the recent work of Reshef et al. [Reshef DN, et al.
(2011) Science 334(6062):1518–1524], which proposed an alterna-
tive definition of equitability and introduced a new statistic, the
“maximal information coefficient” (MIC), said to satisfy equitabil-
ity in contradistinction to mutual information. These conclusions,
however, were supported only with limited simulation evidence,
not with mathematical arguments. Upon revisiting these claims,
we prove that the mathematical definition of equitability pro-
posed by Reshef et al. cannot be satisfied by any (nontrivial) de-
pendence measure. We also identify artifacts in the reported
simulation evidence. When these artifacts are removed, estimates
of mutual information are found to be more equitable than esti-
mates of MIC. Mutual information is also observed to have consis-
tently higher statistical power than MIC. We conclude that estimating
mutual information provides a natural (and often practical) way to
equitably quantify statistical associations in large datasets.

This paper addresses a basic yet unresolved issue in statistics:
How should one quantify, from finite data, the association

between two continuous variables? Consider the squared Pear-
son correlation R2. This statistic is the standard measure of de-
pendence used throughout science and industry. It provides a
powerful and meaningful way to quantify dependence when two
variables share a linear relationship exhibiting homogenous
Gaussian noise. However, as is well known, R2 values often cor-
relate badly with one’s intuitive notion of dependence when
relationships are highly nonlinear.
Fig. 1 provides an example of how R2 can fail to sensibly quantify

associations. Fig. 1A shows a simulated dataset, representing a noisy
monotonic relationship between two variables x and y. This yields
a substantial R2 measure of dependence. However, the R2 value
computed for the nonmonotonic relationship in Fig. 1B is not
significantly different from zero even though the two relationships
shown in Fig. 1 are equally noisy.
It is therefore natural to ask whether one can measure sta-

tistical dependencies in a way that assigns “similar scores to
equally noisy relationships of different types.” This heuristic
criterion has been termed “equitability” by Reshef et al. (1, 2),
and its importance for the analysis of real-world data has been
emphasized by others (3, 4). It has remained unclear, however,
how equitability should be defined mathematically. As a result, no
dependence measure has yet been proved to have this property.
Here we argue that the heuristic notion of equitability is

properly formalized by a self-consistency condition that we call
“self-equitability.” This criterion arises naturally as a weakened
form of the well-known Data Processing Inequality (DPI). All
DPI-satisfying dependence measures are thus proved to satisfy
self-equitability. Foremost among these is “mutual information,”
a quantity of central importance in information theory (5, 6). In-
deed, mutual information is already widely believed to quantify

dependencies without bias for relationships of one type or an-
other. And although it was proposed in the context of modeling
communications systems, mutual information has been repeatedly
shown to arise naturally in a variety of statistical problems (6–8).
The use of mutual information for quantifying associations in

continuous data is unfortunately complicated by the fact that it
requires an estimate (explicit or implicit) of the probability dis-
tribution underlying the data. How to compute such an estimate
that does not bias the resulting mutual information value remains
an open problem, one that is particularly acute in the undersampled
regime (9, 10). Despite these difficulties, a variety of practical es-
timation techniques have been developed and tested (11, 12). In-
deed, mutual information is now routinely computed on continuous
data in many real-world applications (e.g., refs. 13–17).
Unlike R2, the mutual information values I of the underlying

relationships in Fig. 1 A and B are identical (0.72 bits). This is
a consequence of the self-equitability of mutual information. Ap-
plying the kth nearest-neighbor (KNN) mutual information esti-
mation algorithm of Kraskov et al. (18) to simulated data drawn
from these relationships, we see that the estimated mutual in-
formation values agree well with the true underlying values.
However, Reshef et al. claim in their paper (1) that mutual

information does not satisfy the heuristic notion of equitability.
After formalizing this notion, the authors also introduce a new
statistic called the “maximal information coefficient” (MIC),
which, they claim, does satisfy their equitability criterion. These
results are perhaps surprising, considering that MIC is actually
defined as a normalized estimate of mutual information. However,
no mathematical arguments were offered for these assertions; they
were based solely on the analysis of simulated data.
Here we revisit these claims. First, we prove that the definition

of equitability proposed by Reshef et al. is, in fact, impossible for
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any (nontrivial) dependence measure to satisfy. MIC is then
shown by example to violate various intuitive notions of de-
pendence, including DPI and self-equitability. Upon revisiting
the simulations of Reshef et al. (1), we find the evidence offered
in support of their claims about equitability to be artifactual.
Indeed, random variations in the MIC estimates of ref. 1, which
resulted from the small size of the simulated datasets used, are
seen to have obscured the inherently nonequitable behavior of
MIC. When moderately larger datasets are used, it becomes
clear that nonmonotonic relationships have systematically re-
duced MIC values relative to monotonic ones. The MIC values
computed for the relationships in Fig. 1 illustrate this bias. We
also find that the nonequitable behavior reported for mutual
information by Reshef et al. does not reflect inherent properties
of mutual information, but rather resulted from the use of
a nonoptimal value for the parameter k in the KNN algorithm of
Kraskov et al. (18).
Finally we investigate the power of MIC, the KNN mutual in-

formation estimator, and other measures of bivariate dependence.
Although the power of MIC was not discussed by Reshef et al. (1),
this issue is critical for the kinds of applications described in their
paper. Here we find that, when an appropriate value of k is used,
KNN estimates of mutual information consistently outperform
MIC in tests of statistical power. However, we caution that other
nonequitable measures such as “distance correlation” (dCor) (19)
and Hoeffding’s D (20) may prove to be more powerful on some
real-world datasets than the KNN estimator.
In the text that follows, uppercase letters (X ;Y ; . . .) are used

to denote random variables, lowercase letters ðx; y; . . .Þ denote
specific values for these variables, and tildes ð~x;~y; . . .Þ signify bins
into which these values fall when histogrammed. A “dependence
measure,” written D½X ;Y �, refers to a function of the joint
probability distribution pðX ;Y Þ, whereas a “dependence statis-
tic,” written Dfx; yg, refers to a function computed from finite
data fxi; yigNi=1 that has been sampled from pðX ;Y Þ.
Results
R2-Equitability. In their paper, Reshef et al. (1) suggest the fol-
lowing definition of equitability. This makes use of the squared
Pearson correlation measure R2½ · �, so for clarity we call this cri-
terion “R2-equitability.”
Definition 1. A dependence measure D½X ;Y � is R2-equitable if and
only if, when evaluated on a joint probability distribution pðX ;Y Þ

that corresponds to a noisy functional relationship between two real
random variables X and Y, the following relation holds:

D½X ;Y �= g
�
R2½ f ðXÞ;Y ��: [1]

Here, g is a function that does not depend on pðX ;Y Þ and f is the
function defining the noisy functional relationship, i.e.,

Y= f ðXÞ+ η; [2]

for some random variable η. The noise term η may depend on f ðXÞ
as long as η has no additional dependence on X, i.e., as long as
X↔ f ðXÞ↔ η is a Markov chain.†
Heuristically this means that, by computing the measure

D½X ;Y � from knowledge of pðX ;Y Þ, one can discern the strength
of the noise η, as quantified by 1−R2½ f ðXÞ;Y �, without knowing
the underlying function f . Of course this definition depends
strongly on what properties the noise η is allowed to have. In
their simulations, Reshef et al. (1) considered only uniform ho-
moscedastic noise: η was drawn uniformly from some symmetric
interval ½−a; a�. Here we consider a much broader class of heter-
oscedastic noise: η may depend arbitrarily on f ðXÞ, and pðη  j f ðXÞÞ
may have arbitrary functional form.
Our first result is this: No nontrivial dependence measure can

satisfy R2-equitability. This is due to the fact that the function f in
Eq. 2 is not uniquely specified by pðX ;Y Þ. For example, consider
the simple relationship Y = X + η. For every invertible function
h there also exists a valid noise term ξ such that Y = hðXÞ+ ξ
(SI Text, Theorem 1). R2-equitability then requires D½X ;Y �=
gðR2½X ;Y �Þ= gðR2½hðXÞ;Y �Þ. However, R2½X ;Y � is not invariant
under invertible transformations of X. The function g must
therefore be constant, implying that D½X ;Y � does not depend
on pðX ;Y Þ and is therefore trivial.

Self-Equitability and Data Processing Inequality. Because R2-equi-
tability cannot be satisfied by any (interesting) dependence mea-
sure, it cannot be adopted as a useful mathematical formalization of
Reshef et al.’s heuristic (1). Instead we propose formalizing the
notion of equitability as an invariance property we term self-
equitability, which is defined as follows.
Definition 2. A dependence measure D½X ;Y � is self-equitable if and
only if it is symmetric (D½X ;Y �= D½Y ;X �) and satisfies

D½X ;Y �= D½ f ðXÞ;Y �; [3]

whenever f is a deterministic function, X and Y are variables of any
type, and X↔ f ðXÞ↔Y forms a Markov chain.
The intuition behind this definition is similar to that behind

Eq. 1, but instead of using R2 to quantify the noise in the re-
lationship we use D itself. An important advantage of this defini-
tion is that the Y variable can be of any type, e.g., categorical,
multidimensional, or non-Abelian. By contrast, the definition of
R2-equitability requires that Y and f ðXÞ must be real numbers.
Self-equitability also employs a more general definition of

“noisy relationship” than does R2-equitability: Instead of positing
additive noise as in Eq. 2, one simply assumes that Y depends on
X only through the value of f ðXÞ. This is formalized by the Markov
chain condition X↔ f ðXÞ↔Y . As a result, any self-equi-
table measure D½X ;Y � must be invariant under arbitrary in-
vertible transformations of X or Y (SI Text, Theorem 2). Self-
equitability also has a close connection to DPI, a fundamental
criterion in information theory (6) that we briefly restate here.
Definition 3. A dependence measure D½X ;Y � satisfies DPI if

and only if

A B

Fig. 1. Illustration of equitability. (A and B) N= 1,000 data points simulated
for two noisy functional relationships that have the same noise profile but
different underlying functions. (Upper) Mean ± SD values, computed over
100 replicates, for three statistics: Pearson’s R2, mutual information I (in bits),
and MIC. Mutual information was estimated using the KNN algorithm (18)
with k= 1. The specific relationships simulated are both of the form
y = x2 + 1

2+ η, where η is noise drawn uniformly from ð−0:5,0:5Þ and x is drawn
uniformly from one of two intervals, (A) ð0,1Þ or (B) ð−1,1Þ. Both relation-
ships have the same underlying mutual information (0.72 bits).

†The Markov chain condition X↔ fðXÞ↔ η means that pðη  j fðXÞ,XÞ=pðη  j fðXÞÞ. Chapter 2
of ref. 6 gives a good introduction to Markov chains relevant to this discussion.
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D½X ;Z�≤D½Y ;Z�; [4]

whenever the random variables X ;Y ;Z form a Markov chain
X↔Y↔Z.
DPI formalizes our intuitive notion that information is gen-

erally lost, and is never gained, when transmitted through a noisy
communications channel. For instance, consider a game of tele-
phone involving three children, and let the variables X, Y, and Z
represent the words spoken by the first, the second, and the third
child, respectively. The criterion in Eq. 4 is satisfied only if the
measure D upholds our intuition that the words spoken by the
third child will be more strongly dependent on those said by
the second child (as quantified by D½Y ;Z�) than on those said by
the first child (quantified by D½X ;Z�).
It is readily shown that all DPI-satisfying dependence mea-

sures are self-equitable (SI Text, Theorem 3). Moreover, many
dependence measures do satisfy DPI (SI Text, Theorem 4). This
begs the question of whether there are any self-equitable mea-
sures that do not satisfy DPI. The answer is technically “yes”: For
example, if D½X ;Y � satisfies DPI, then a new measure defined as
D′½X ;Y �= −D½X ;Y � will be self-equitable but will not satisfy
DPI. However, DPI enforces an important heuristic that self-
equitability does not, namely that adding noise should not in-
crease the strength of a dependency. So although self-equitable
measures that violate DPI do exist, there is good reason to re-
quire that sensible measures also satisfy DPI.

Mutual Information.Among DPI-satisfying dependence measures,
mutual information is particularly meaningful. Mutual infor-
mation rigorously quantifies, in units known as “bits,” how much
information the value of one variable reveals about the value of
another. This has important and well-known consequences in
information theory (6). Perhaps less well known, however, is the
natural role that mutual information plays in the statistical analysis
of data, a topic we now touch upon briefly.
The mutual information between two random variables X and

Y is defined in terms of their joint probability distribution
pðX ;Y Þ as

I½X ;Y �=
Z

dx  dy  pðx; yÞlog2
pðx; yÞ
pðxÞpð yÞ: [5]

I½X ;Y � is always nonnegative and I½X ;Y �= 0 only when pðX ;Y Þ=
pðXÞ pðY Þ. Thus, mutual information will be greater than zero
when X and Y exhibit any mutual dependence, regardless of how
nonlinear that dependence is. Moreover, the stronger the mutual
dependence is, the larger the value of I½X ;Y �. In the limit where Y
is a (nonconstant) deterministic function of X (over a continuous
domain), I½X ;Y �=∞.
Mutual information is intimately connected to the statistical

problem of detecting dependencies. From Eq. 5 we see that, for
data drawn from the distribution pðX ;Y Þ, I½X ;Y � quantifies the
expected per-datum log-likelihood ratio of the data coming from
pðX ;Y Þ as opposed to pðXÞpðY Þ. Thus, 1=I½X ;Y � is the typical
amount of data one needs to collect to get a twofold increase in
the posterior probability of the true hypothesis relative to the
null hypothesis [i.e., that pðX ;Y Þ= pðXÞpðY Þ]. Moreover, the
Neyman–Pearson lemma (21) tells us that this log-likelihood
ratio,

P
ilog2½pðxi; yiÞ=pðxiÞpðyiÞ�, has the maximal possible sta-

tistical power for such a test. The mutual information I½X ;Y �
therefore provides a tight upper bound on how well any test of
dependence can perform on data drawn from pðX ;Y Þ.
Accurately estimating mutual information from finite contin-

uous data, however, is nontrivial. The difficulty lies in estimating
the joint distribution pðX ;Y Þ from a finite sample of N data points
fxi; yigNi=1. The simplest approach is to “bin” the data—to super-
impose a rectangular grid on the x; y scatter plot and then assign
each continuous x value (or y value) to the column bin ~x (or row
bin ~y) into which it falls. Mutual information can then be esti-
mated from the data as

Inaivefx; yg=
X
~x;~y

p̂
�
~x;~y

�
log2

p̂
�
~x;~y

�
p̂
�
~x
�
p̂
�
~y
�; [6]

where p̂ð~x;~yÞ is the fraction of data points falling into bin ð~x;~yÞ.
Estimates of mutual information that rely on this simple binning
procedure are commonly called “naive” estimates (22). The
problem with such naive estimates is that they systematically
overestimate I½X ;Y �. As was mentioned above, this has long
been recognized as a problem and significant attention has been
devoted to developing alternative methods that do not systemati-
cally overestimate mutual information. We emphasize, however,
that the problem of estimating mutual information becomes easy
in the large data limit, because pðX ;Y Þ can be determined to
arbitrary accuracy as N→∞.

The Maximal Information Coefficient. In contrast to mutual in-
formation, Reshef et al. (1) define MIC as a statistic, not as a de-
pendence measure. At the heart of this definition is a naive mutual
information estimate IMICfx; yg computed using a data-dependent
binning scheme. Let nX and nY , respectively, denote the number of
bins imposed on the x and y axes. The MIC binning scheme is
chosen so that (i) the total number of bins nXnY does not exceed
some user-specified value B and (ii) the value of the ratio

MICfx; yg= IMICfx; yg
ZMIC

; [7]

where ZMIC = log2ðminðnX ; nY ÞÞ, is maximized. The ratio in Eq.
7, computed using this data-dependent binning scheme, is how
MIC is defined. Note that, because IMIC is bounded above by
ZMIC, MIC values will always fall between 0 and 1. We note that
B=N0:6 (1) and B=N0:55 (2) have been advocated, although no
mathematical rationale for these choices has been presented.
In essence the MIC statistic MICfx; yg is defined as a naive

mutual information estimate IMICfx; yg, computed using a con-
strained adaptive binning scheme and divided by a data-
dependent normalization factor ZMIC. However, in practice this
statistic often cannot be computed exactly because the definition
of MIC requires a maximization step over all possible binning
schemes, a computationally intractable problem even for mod-
estly sized datasets. Rather, a computational estimate of MIC is
typically required. Except where noted otherwise, MIC values
reported in this paper were computed using the software pro-
vided by Reshef et al. (1).
Note that when only two bins are used on either the x or the y

axis in the MIC binning scheme, ZMIC = 1. In such cases the MIC
statistic is identical to the underlying mutual information esti-
mate IMIC. We point this out because a large majority of the MIC
computations reported below produced ZMIC = 1. Indeed it
appears that, except for highly structured relationships, MIC
typically reduces to the naive mutual information estimate IMIC
(SI Text).‡

Analytic Examples. To illustrate the differing properties of mutual
information and MIC, we first compare the exact behavior
of these dependence measures on simple example relationships
pðX ;Y Þ.§ We begin by noting that MIC is completely insensitive
to certain types of noise. This is illustrated in Fig. 2 A–C, which
provides examples of how adding noise at all values of X will
decrease I½X ;Y � but not necessarily decrease MIC½X ;Y �. This
pathological behavior results from the binning scheme used in

‡As of this writing, code for the MIC estimation software described by Reshef et al. in ref.
1 has not been made public. We were therefore unable to extract the IMIC values com-
puted by this software. Instead, IMIC values were extracted from the open-source MIC
estimator of Albanese et al. (23).

§Here we define the dependence measureMIC½X;Y � as the value of the statisticMICfx; yg
in the N→∞ limit.
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the definition of MIC: If all data points can be partitioned into
two opposing quadrants of a 2 × 2 grid (half the data in each),
a relationship will be assigned MIC½X ;Y �= 1 regardless of the
structure of the data within the two quadrants. Mutual in-
formation, by contrast, has no such limitations on its resolution.
Furthermore, MIC½X ;Y � is not invariant under nonmonotonic

transformations of X or Y. Mutual information, by contrast, is
invariant under such transformations. This is illustrated in Fig. 2
D–F. Such reparameterization invariance is a necessary attribute
of any dependence measure that satisfies self-equitability or DPI
(SI Text, Theorem 2). Fig. 2 G–J provides an explicit example of
how the noninvariance of MIC causes DPI to be violated,
whereas Fig. S2 shows how noninvariance can lead to violation
of self-equitability.

Equitability Tests Using Simulated Data. The key claim made by
Reshef et al. (1) in arguing for the use of MIC as a dependence
measure has two parts. First, MIC is said to satisfy not just the
heuristic notion of equitability, but also the mathematical crite-
rion of R2-equitability (Eq. 1). Second, Reshef et al. (1) argue
that mutual information does not satisfy R2-equitability. In es-
sence, the central claim made in ref. 1 is that the binning scheme
and normalization procedure that transform mutual information
into MIC are necessary for equitability. As mentioned in the
Introduction, however, no mathematical arguments were made for
these claims; these assertions were supported entirely through the
analysis of limited simulated data.
We now revisit this simulation evidence. To argue that MIC is

R2-equitable, Reshef et al. simulated data for various noisy func-
tional relationships of the form Y = f ðXÞ+ η. A total of 250, 500,

or 1,000 data points were generated for each dataset; see Table S1
for details. MICfx; yg was computed for each data set and was
plotted against 1−R2f f ðxÞ; yg, which was used to quantify the
inherent noise in each simulation.
Were MIC to satisfy R2-equitability, plots of MIC against this

measure of noise would fall along the same curve regardless of
the function f used for each relationship. At first glance Fig. 3A,
which is a reproduction of figure 2B of ref. 1, suggests that this
may be the case. These MIC values exhibit some dispersion, of
course, but this is presumed in ref. 1 to result from the finite size
of the simulated datasets, not any inherent f-dependent bias
of MIC.
However, as Fig. 3B shows, substantial f-dependent bias in the

values of MIC become evident when the number of simulated
data points is increased to 5,000. This bias is particularly strong
for noise values between 0.6 and 0.8. To understand the source
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J I = 1.0 
MIC = 1.0 
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Fig. 2. MIC violates multiple notions of dependence that mutual in-
formation upholds. (A–J) Example relationships between two variables with
indicated mutual information values (I, shown in bits) and MIC values. These
values were computed analytically and checked using simulated data (Fig.
S1). Dark blue blocks represent twice the probability density of light blue
blocks. (A–C) Adding noise everywhere to the relationship in A diminishes
mutual information but not necessarily MIC. (D–F) Relationships related by
invertible nonmonotonic transformations of X and Y. Mutual information
is invariant under these transformations but MIC is not. (G–J) Convolving the
relationships shown in G–I along the chain W ↔X↔Y ↔Z produces the re-
lationship shown in J. In this case MIC violates DPI because MIC½W ; Z� >
MIC½X;Y �. Mutual information satisfies DPI here because I½W ;Z�< I½X;Y �.

E

A B

C D

Fig. 3. Reexamination of the R2-equitability tests reported by Reshef et al.
(1). MIC values and mutual information values were computed for datasets
simulated as described in figure 2 B–F of ref. 1. Specifically, each simulated
relationship is of the form Y = fðXÞ+ η. Twenty-one different functions f
and twenty-four different amplitudes for the noise η were used. Details are
provided in Table S1. MIC and mutual information values are plotted against
the inherent noise in each relationship, as quantified by 1−R2ffðxÞ; yg. (A)
Reproduction of figure 2B of ref. 1. MICfx; yg was calculated on datasets
comprising 250, 500, or 1,000 data points, depending on f. (B) Same as A but
using datasets comprising 5,000 data points each. (C) Reproduction of figure
2D of ref. 1. Mutual information values Ifx; yg were computed (in bits) on
the datasets from A, using the KNN estimator with smoothing parameter
k= 6. (D) KNN estimates of mutual information, made using k= 1, computed
for the datasets from B. (E) Each point plotted in A–D is colored (as indicated
here) according to the monotonicity of f, which is quantified using the
squared Spearman rank correlation between X and fðXÞ (Fig. S3).
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of this bias, we colored each plotted point according to the
monotonicity of the function f used in the corresponding simu-
lation. We observe that MIC assigns systematically higher scores to
monotonic relationships (colored in blue) than to nonmonotonic
relationships (colored in orange). Relationships of intermediate
monotonicity (purple) fall in between. This bias of MIC for mono-
tonic relationships is further seen in analogous tests of self-equita-
bility (Fig. S4A).
MIC is therefore seen, in practice, to violate R2-equitability,

the criterion adopted by Reshef et al. (1). However, this non-
equitable behavior of MIC is obscured in figure 2B of ref. 1 by
two factors. First, scatter due to the small size of the simulated
datasets obscures the f-dependent bias of MIC. Second, the
nonsystematic coloring scheme used in figure 2B of ref. 1 masks the
bias that becomes apparent with the coloring scheme used here.
To argue that mutual information violates their equitability

criterion, Reshef et al. (1) estimated the mutual information in
each simulated dataset and then plotted these estimates Ifx; yg
against noise, again quantified by 1−R2f f ðxÞ; yg. These results,
initially reported in figure 2D of ref. 1, are reproduced here in
Fig. 3C. At first glance, Fig. 3C suggests a bias of mutual in-
formation for monotonic functions that is significantly worse
than the bias exhibited by MIC. However, these observations are
artifacts resulting from two factors.
First, Reshef et al. (1) did not compute the true mutual in-

formation of the underlying relationship; rather, they estimated
it using the KNN algorithm of Kraskov et al. (18). This algorithm
estimates mutual information based on the distance between kth
nearest-neighbor data points. In essence, k is a smoothing pa-
rameter: Low values of k will give estimates of mutual in-
formation with high variance but low bias, whereas high values of
k will lessen this variance but increase bias. Second, the bias due
to large values of k is exacerbated in small datasets relative to
large datasets. If claims about the inherent bias of mutual in-
formation are to be supported using simulations, it is imperative
that mutual information be estimated on datasets that are suf-
ficiently large for this estimator-specific bias to be negligible.
We therefore replicated the analysis in figure 2D of ref. 1, but

simulated 5,000 data points per relationship and used the KNN
mutual information estimator with k= 1 instead of k= 6. The
results of this computation are shown in Fig. 3D. Here we see
nearly all of the nonequitable behavior cited in ref. 1 is elimi-
nated; this observation holds in the large data limit (Fig. S4D).
Of course mutual information does not exactly satisfy R2-eq-

uitability because no meaningful dependence measure does.
However, mutual information does satisfy self-equitability, and
Fig. S4E shows that the self-equitable behavior of mutual in-
formation is seen to hold approximately for KNN estimates
made on the simulated data from Fig. 3D. Increasing values of k
reduce the self-equitability of the KNN algorithm (Fig. S4 E–G).

Statistical Power. Simon and Tibshirani (24) have stressed the
importance of statistical power for measures of bivariate asso-
ciation. In this context, “power” refers to the probability that
a statistic, when evaluated on data exhibiting a true dependence
between X and Y, will yield a value that is significantly different
from that for data in which X and Y are independent. MIC was
observed (24) to have substantially less power than a statistic
called dCor (19), but KNN mutual information estimates were
not tested. We therefore investigated whether the statistical
power of KNN mutual information estimates could compete with
dCor, MIC, and other non–self-equitable dependence measures.
Fig. 4 presents the results of statistical power comparisons

performed for various statistics on relationships of five different
types.{ As expected, R2 was observed to have optimal power on
the linear relationship, but essentially negligible power on the
other (mirror symmetric) relationships. dCor and Hoeffding’s D
(20) performed similarly to one another, exhibiting nearly the
same power as R2 on the linear relationship and retaining sub-
stantial power on all but the checkerboard relationship.
Power calculations were also performed for the KNN mutual

information estimator using k= 1, 6, and 20. KNN estimates
computed with k= 20 exhibited the most statistical power of
these three; indeed, such estimates exhibited optimal or near-
optimal statistical power on all but the linear relationship.
However, R2, dCor, and Hoeffding’s D performed sub-

stantially better on the linear relationship (Fig. S6). This is im-
portant to note because the linear relationship is likely to be
more representative of many real-world datasets than are the
other four relationships tested. The KNN mutual information
estimator also has the important disadvantage of requiring the
user to specify k without any mathematical guidelines for doing
so. The choices of k used in our simulations were arbitrary, and,
as shown, these choices can greatly affect the power and equi-
tability of one’s mutual information estimates.
MIC, computed using B=N0:6, was observed to have relatively

low statistical power on all but the sinusoidal relationship. This is
consistent with the findings of ref. 24. Interestingly, MIC actually
exhibited less statistical power than the mutual information es-
timate IMIC on which it is based (Figs. S5 and S6). This argues
that the normalization procedure in Eq. 7 may actually reduce
the statistical utility of MIC.
We note that the power of the KNN estimator increased

substantially with k, particularly on the simpler relationships,
whereas the self-equitability of the KNN estimator was observed
to decrease with increasing k (Fig. S4 E–G). This trade-off be-
tween power and equitability, observed for the KNN estimator,

Fig. 4. Assessment of statistical power. Heat maps show power values computed for R2; dCor (19); Hoeffding’s D (20); KNN estimates of mutual information,
using k = 1, 6, or 20; and MIC. Full power curves are shown in Fig. S6. Simulated datasets comprising 320 data points each were generated for each of five
relationship types (linear, parabolic, sinusoidal, circular, or checkerboard), using additive noise that varied in amplitude over a 10-fold range; see Table S2 for
simulation details. Asterisks indicate, for each relationship type, the statistics that have either the maximal noise-at-50%-power or a noise-at-50%-power that
lies within 25% of this maximum. The scatter plot above each heat map shows an example dataset having noise of unit amplitude.

{These five relationships were chosen to span a wide range of possible qualitative forms;
they should not be interpreted as being equally representative of real data.
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appears to reflect the bias vs. variance trade-off well known in
statistics. Indeed, for a statistic to be powerful it must have low
variance, but systematic bias in the values of the statistic is
irrelevant. By contrast, our definition of equitability is a statement
about the bias of a dependence measure, not the variance of
its estimators.

Discussion
We have argued that equitability, a heuristic property for de-
pendence measures that was proposed by Reshef et al. (1), is
properly formalized by self-equitability, a self-consistency con-
dition closely related to DPI. This extends the notion of equi-
tability, defined originally for measures of association between
one-dimensional variables only, to measures of association be-
tween variables of all types and dimensionality. All DPI-satisfy-
ing measures are found to be self-equitable, and among these
mutual information is particularly useful due to its fundamental
meaning in information theory and statistics (6–8).
Not all statistical problems call for a self-equitable measure of

dependence. For instance, if data are limited and noise is known
to be approximately Gaussian, R2 (which is not self-equitable)
can be a much more useful statistic than estimates of mutual
information. On the other hand, when data are plentiful and
noise properties are unknown a priori, mutual information has
important theoretical advantages (8). Although substantial dif-
ficulties with estimating mutual information on continuous data
remain, such estimates have proved useful in a variety of real-
world problems in neuroscience (14, 15, 25), molecular biology
(16, 17, 26–28), medical imaging (29), and signal processing (13).
In our tests of equitability, the vast majority of MIC estimates

were actually identical to the naive mutual information estimate
IMIC. Moreover, the statistical power of MIC is noticeably re-
duced relative to IMIC in situations where the denominator ZMIC
in Eq. 7 fluctuates (Figs. S5 and S6). This suggests that the nor-

malization procedure at the heart of MIC actually decreases MIC’s
statistical utility.
We briefly note that the difficulty of estimating mutual in-

formation has been cited as a reason for using MIC instead (3).
However, MIC is actually much harder to estimate than mutual
information due to the definition of MIC requiring that all possible
binning schemes for each dataset be tested. Consistent with this we
have found theMIC estimator from ref. 1 to be orders of magnitude
slower than the mutual information estimator of ref. 18.
In addition to its fundamental role in information theory,

mutual information is thus seen to naturally solve the problem of
equitably quantifying statistical associations between pairs of
variables. Unfortunately, reliably estimating mutual information
from finite continuous data remains a significant and unresolved
problem. Still, there is software (such as the KNN estimator) that
can allow one to estimate mutual information well enough for
many practical purposes. Taken together, these results suggest
that mutual information is a natural and potentially powerful
tool for making sense of the large datasets proliferating across
disciplines, both in science and in industry.

Materials and Methods
MIC was estimated using the “MINE” suite of ref. 1 or the “minepy” package
of ref. 23 as described. Mutual information was estimated using the KNN
estimator of ref. 18. Simulations and analysis were performed using custom
Matlab scripts; details are given in SI Text. Source code for all of the analysis
and simulations reported here is available at https://sourceforge.net/projects/
equitability/.
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SI Text
Theorem 1. Let X and η be (not necessarily independent) random
variables and define Y = X + η. For any invertible function h, the
random variable ξ=Y − hðXÞ obeys the Markov chain condition
X ↔ hðXÞ↔ ξ.
Proof: This follows trivially from the fact that, because h is in-
vertible, pðξ  jhðXÞ;XÞ= pðξ  jhðXÞÞ, which is what it means for
X ↔ hðXÞ↔ ξ to be a Markov chain. Note that the definition of ξ
is actually irrelevant here. □

Theorem 2. Every self-equitable dependence measure D½X ;Y � is
invariant under all invertible transformations of X and Y.
Proof: If X ↔ f ðXÞ↔Y is a Markov chain and the functions h1
and h2 are invertible, then

X ↔ h1ðXÞ↔X↔ f ðXÞ↔Y ↔ h2ðY Þ↔Y [S1]

is also a Markov chain. Extracting various Markov subchains and
invoking Eq. 3 of the main text, we see that for every self-equi-
table dependence measure D,

X ↔ h1ðXÞ↔Y⇒D½X ;Y �= D½h1ðXÞ;Y �; [S2]

Y↔ h2ðY Þ↔ h1ðXÞ⇒D½Y ; h1ðXÞ�= D½h2ðY Þ; h1ðXÞ�: [S3]

Invoking the symmetry of D we get D½X ;Y �= D½h1ðXÞ; h2ðY Þ�,
which is what we aimed to prove. □

Theorem 3. Every DPI-satisfying dependence measure D½X ;Y � is
self-equitable.
Proof: If X ↔ f ðXÞ↔Y is a Markov chain, so is

f ðXÞ↔X ↔ f ðXÞ↔Y : [S4]

Extracting Markov subchains and using Eq. 4 of the main text, we
see than for any DPI-satisfying measure D½X ;Y �,

X↔ f ðXÞ↔Y⇒D½X ;Y � ≤ D½ f ðXÞ;Y � [S5]

f ðXÞ↔X↔Y⇒D½ f ðXÞ;Y �≤ D½X ;Y � [S6]

and so D½X ;Y �=D½f ðXÞ;Y �, proving that D is self-equitable. □

Theorem 4. Every dependence measure IF ½X ;Y � that can be written as

IF ½X ;Y � ≡
Z

dx  dy  pðxÞpðyÞF
�

pðx; yÞ
pðxÞpðyÞ

�
; [S7]

where F is a convex function on the nonnegative real numbers,
satisfies DPI. Note that such measures of dependence are called
“F-information” measures (1).
Proof: Let X ↔Y ↔Z be a Markov chain, so that pðx; zÞ =R
dy  pðx  jyÞpðy; zÞ and pðxÞ = R dy  pðx  jyÞpðyÞ. Then

IF ½X ;Z� =
Z

dx  dz  pðxÞpðzÞF
�

pðx; zÞ
pðxÞpðzÞ

�
[S8]

=
Z

dx  dy  dz  pðx  j yÞpðyÞpðzÞF
 R

dy  pðx  j yÞpð y; zÞR
dy  pðx  j yÞpð yÞpðzÞ

!
[S9]

≤
Z

dx  dy  dz  pðx  j yÞpðyÞpðzÞF
�

pð y; zÞ
pðyÞpðzÞ

�
[S10]

=
Z

dy  dz  pð yÞpðzÞF
�

pð y; zÞ
pð yÞpðzÞ

�
[S11]

= IF ½Y ;Z�; [S12]

where in Eq. S10 we have used Jensen’s inequality (2). This
proves that IF ½X ;Z�≤ IF ½Y ;Z� and thus that IF satisfies DPI. □

Noise in the X Variable. The supplemental material of ref. 3 as well
as follow-up work (4) has suggested that R2-equitability should
actually be extended to include cases where noise is present in both
the X and Y variables. This is formalized by replacing Eq. 1 with

D½X + ζ;Y �= g
�
R2½ f ðXÞ;Y ��; [S13]

where ζ is an additional noise term. It is clear, however, that this
more general definition does not permit nontrivial solutions.
This stems from the fact that the left side of Eq. S13 depends
on ζ whereas the right side does not. Any measure D½X + ζ;Y �
would therefore have to be invariant to the amount of noise ζ in
the X coordinate. For example, consider f ðXÞ=X , η= 0 and
assume the noise ζ is very large and does not depend on X.
Eq. S13 would require D½X ;X �=D½X + ζ;X �≈D½ζ;X �, implying
the value assigned by D to the identity relationship must be the
same as the value assigned to a relationship in which the two
variables in question are independent.

MIC and IMIC Are Usually Identical.As mentioned in the main text, we
were unable to extract IMIC values from the MIC estimator of Re-
shef et al. (3) because the source code has not, as of this writing, been
made publicly available. However, we were able to extract IMIC, nX ,
and nY values from the MIC estimator of Albanese et al. (5).
For over 99% of the MIC computations shown Fig. 3 A and B

of the main text, the MIC algorithm chose binning schemes
having only two bins on either the x or the y axis. As mentioned
above, MICfx; yg= IMICfx; yg in such cases. It therefore appears
that the primary tests of equitability reported by Reshef et al. (3)
provide virtually no information about how the normalization
procedure in the definition of MIC affects MIC’s equitability.
The common occurrence of MICfx; yg= IMICfx; yg is also re-

flected in Fig. S5. On the linear, parabolic, and sinusoidal rela-
tionships we found ZMIC = 1 (corresponding to minðnX ; nY Þ= 2)
for every one of the 37,500 relationships tested. Thus, IMIC and
MIC exhibited identical power profiles. However, on the circular
and checkerboard relationships we consistently observed ZMIC > 1
(i.e., minðnX ; nY Þ> 2) when noise was sufficiently low; ZMIC
dropped back down to 1 as noise increased.
Tellingly, IMIC actually outperformed MIC in tests of statistical

power. It appears that right at the noise level at which highly
structured relationships become difficult to discern, the binning
scheme chosen by MIC starts to fluctuate. The normalization
factor ZMIC therefore fluctuates, causing MIC values to become
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noisier—and thus less powerful—than the underlying mutual
information estimate IMIC. This suggests that the normalization
procedure in Eq. 7 of the main text, which transforms IMIC into
MIC, may actually be harmful for quantifying dependencies.

Computational Methods. The KNNmutual information estimator of
Kraskov et al. (6)wasdownloaded fromhttp://bsp.teithe.gr/members/
downloads/Milca.html. Except for k, which we varied depending on
context, the KNN estimator was run with default settings.

Except where stated otherwise, MIC estimates were computed
with the software described by Reshef et al. (3), downloaded from
www.exploredata.net, using default parameters (including α= 0:6).
All other MIC values were computed using a version of the esti-
mator of Albanese et al. (5) (with parameters α= 0:6, c= 15) that
was edited to also report the values of IMIC, nX , and nY .
All other analysis was performed in Matlab. Our Matlab scripts,

along with our edited version of the Albanese et al. MIC estimator,
are available at https://sourceforge.net/projects/equitability/.
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Fig. S1. (A–J) Estimates of mutual information and MIC computed for N = 1,000 data points sampled from the joint probability distributions shown in Fig. 2.
Mutual information estimates were computed using the KNN estimator of Kraskov et al. (6) with k= 1. MIC estimates were computed using the estimator of
Reshef et al. (3) with default parameters. Values for both mutual information and MIC are reported as mean ± SD over 100 replicates.
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Fig. S2. MIC violates self-equitability. The relationships in A and B result from Y = fðXÞ+ η with function f and noise term η respectively defined in C and D. Note
that the noise term η, as required, depends on fðXÞ but not otherwise on X. MIC is seen to violate self-equitability (Eq. 3) because MIC½X;Y �≠MIC½fðXÞ;Y �.

Fig. S3. Functions f used in the simulations described in Fig. 3 and Fig. S4 and listed in Table S1. Functions are colored according to each one’s (indicated)
monotonicity (Fig. 3E and Fig. S4H).

Fig. S4. Additional equitability tests of MIC, dCor, Hoeffding’s D, and the KNN mutual information estimator. Noisy relationships were simulated as in Fig. 2 B
and D; see Table S1 for details. (A) The MIC estimator of Reshef et al. (1) violates self-equitability on the data simulated for Fig. 2B of the main text: Specifically,
MICfx; yg<MICffðxÞ; yg for sufficiently nonmonotonic functions f. This downward bias of MIC is particularly pronounced for MICffðxÞ; yg values between 0.2
and 0.4. (B and C) A downward bias for nonmonotonic functions, indicative of non–self-equitability, is also seen in similar tests of (B) dCor (2) and (C)
Hoeffding’s D (3). (D) Extrapolation of Fig. 2D of the main text to datasets of infinite size. Here, mutual information values were computed semianalytically
using I½X;Y �=H½Y �−H½η� where H is entropy (4). (E–G) Mutual information estimates Ifx; yg returned by the KNN algorithm using (E) k= 1, (F) k= 6, and (G)
k= 20. Increasing values of k result in decreasing adherence to self-equitability. This is most apparent for nonmonotonic functions, which are more readily
blurred by smoothing than are monotonic functions. (H) Correspondence between color and monotonicity; same as Fig. 3E.

1. Reshef DN, et al. (2011) Detecting novel associations in large data sets. Science 334(6062):1518–1524.
2. Szekely G, Rizzo M (2009) Brownian distance covariance. Ann Appl Stat 3(4):1236–1265.
3. Hoeffding W (1948) A non-parametric test of independence. Ann Math Stat 19(4):546–557.
4. Cover TM, Thomas JA (1991) Elements of Information Theory (Wiley, New York).
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Fig. S5. Power comparisons for IMIC and two MIC estimators. (A) Power, estimated as in Fig. 4, for the MIC estimator of Reshef et al. (3), for the MIC estimator
of Albanese et al. (5), and for the corresponding IMIC values computed by the Albanese et al. estimator. (B) Each heat map shows the fraction of simulations, at
each noise level, for which the Albanese et al. MIC estimator used an nX ×nY binning scheme with the indicated value of minðnX ,nY Þ. This value determines the
normalization constant ZMIC = log2ðminðnX ,nY ÞÞ.
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Fig. S6. Power curves corresponding to the heat maps shown in Fig. 4 and Fig. S5. For each of the relationships tested (linear, parabolic, sinusoidal, circular,
and checkerboard), power vs. noise is plotted for eight different statistics: R2 (black); dCor (gray); Hoeffding’s D (green); MIC computed using the algorithm of
Reshef et al. (3) (red); IMIC computed using the modified algorithm of Albanese et al. (5) (purple); and mutual information computed using the KNN estimator
with k= 1 (light blue), k= 6 (medium blue), or k= 20 (dark blue).
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Table S1. Noisy functional relationships simulated for Fig. 3 and Fig. S4, ordered according to monotonicity as described in the Fig. 3
legend

Description Monotonicity N X fðXÞ
Line 1.00 1,000 [0, 1] X
Exponential [2X ] 1.00 1,000 [0, 10] 2X

Exponential [10X ] 1.00 1,000 [0, 10] 10X

LP, low frequency 1.00 1,000 [0, 1] 1
5 sinð4ð2X −1ÞÞ+ 11

10 ð2X −1Þ

LP, high frequency 1.00 1,000 [0, 1] 1
10 sinð10:6ð2X − 1ÞÞ+ 11

10 ð2X − 1Þ

L shaped 1.00 1,000 [0, 1]

(
X=99 if X ≤ 99

100

99X −98 if X > 99
100

LP, high frequency 2 0.98 1,000 [0, 1] 1
5 sinð10:6ð2X −1ÞÞ+ 11

10 ð2X −1Þ

Sigmoid 0.70 1,000 [0, 1]

8>><
>>:

0 if X < 49
100

50
�
X − 1

2

�
+ 1

2 if 49
100≤X < 51

100

1 if X ≥ 51
100

Lopsided L shaped 0.48 500* [0, 1]

8>><
>>:

200X if X < 1
200

−198X + 199
100 if 1

200≤X < 1
100

−X
99+

1
99 if X ≥ 1

100

Spike 0.35 1,000 [0, 1]

8>><
>>:

20X if X < 1
20

−18X + 19
10 if 1

20≤X < 1
10

−X
9 +

1
9 if X ≥ 1

10

Cubic, Y stretched 0.10 1,000 [−1.3, 1.1] 41ð4X3 +X2 −4XÞ
LP, medium frequency 0.09 500* [0, 1] sinð10πXÞ+X
Cubic 0.07 1,000 [−1.3, 1.1] 4X3 +X2 −4X
Sin, low frequency 0.04 250 [0, 1] sinð8πXÞ
VF [med] cos 0.02 1,000 [0, 1] cosð5πXð1+XÞÞ
VF [med] sin 0.02 500* [0, 1] cosð6πXð1+XÞÞ
Sin, high frequency 0.01 1,000 [0, 1] sinð16πXÞ
NFF [low] cos 0.00 250* [0, 1] cosð7πXÞ
Cos, high frequency 0.00 500* [0, 1] cosð14πXÞ
Parabola 0.00 1,000

�
−1
2, 

1
2

�
4X2

NFF [low] sin 0.00 1,000 [0, 1] sinð9πXÞ
These relationships correspond to the relationships simulated by Reshef et al. (3) for Fig. 2 B–F, as described in table S3 of ref. 3. Here we have abbreviated

function names as follows: LP, linear + periodic; VF, varying frequency; and NFF, non-Fourier frequency. For each relationship listed, data fxi ,yigNi=1 were
simulated, where Y = fðXÞ+ η, X ranged over the indicated domain, f was one of the 21 functions shown, and η was uniform noise of amplitude equal to the
range of fðXÞ times one of these 24 relative amplitudes: 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.15, 1.3, 1.45, 1.60, 1.8, 2.1, 2.5, 3.1, 4.5, 6, 8, 10, or 20.
We note that, as in the simulations Reshef et al. (3) used for their figure 2, X values were not distributed uniformly within the allowed range but rather were
chosen so that the points ðX,fðXÞÞwere spaced evenly along the length of each curve in the x,y plane. This, for instance, is the reason the monotonicities of the
“Cubic” and “Cubic, Y stretched” relationships are slightly different.
*Reshef et al. (3) also simulated these relationships using N= 1,000 data points; we performed simulations only with the number of data points indicated.
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Table S2. The X,Y relationships simulated for the power
calculations of Fig. 4 and Figs. S5 and S6

Random variable

Relationship type X Y

Linear ξ 2
3X +aη

Parabolic ξ 2
3X

2 + aη

Sinusoidal 5
2 θ 2 cosðXÞ+aη

Circular 10 cosðθÞ+aξ 10 sinðθÞ+aη

Checkerboard 10X0 +aξ 10Y0 +aη

Five hundred trial datasets were generated for each of these relationships
at each of twenty-five different noise amplitudes distributed logarithmically
between 1 and 10. For each dataset, statistics were computed on the “true”
data fxi ,yigNi=1 as well as on “null” data, for which the indexes i on the y
values had been randomly permuted. The power of each statistic was de-
fined as the fraction of true datasets yielding a statistic value greater than
95% of the values yielded by the corresponding null datasets. ξ and η are
random numbers drawn from the normal distribution Nð0,1Þ. θ is a random
number drawn uniformly from the interval ½−π,πÞ. ðX0,Y0Þ is a pair of random
numbers drawn uniformly from the solid squares of a 4× 5 checkerboard,
where each square has sides of length 1. a is the “noise amplitude” shown in
Fig. 4 and Figs. S5 and S6.
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