5 research outputs found

    Development of a prediction model for output power reduction of PV solar panels based on environmental parameters using particle swarm optimization technique

    Get PDF
    Design guidelines for solar panels regarding the environmental parameter’s influence over the solar panel power output are limited. This study proposes an output power percentage reduction model for predicting the effect of environmental parameters (ambient temperature, wind speed, relative humidity, dust accumulation and rain amount) using Particle Swarm Optimization (PSO). The PSO technique prevents an exhaustive traditional trial-and-error procedure for obtaining the set of the unknown coefficients of the proposed model. A total of 244 databases were collected from the literature and divided into two parts. The first set which comprises 194 data sets were used to build the proposed model while 50 datasets as the second set were used in the verification process. Three performance measures, namely mean absolute, mean absolute percentage and root mean square errors were used in the proposed model to ensure the accuracy of the study. The design procedure and accuracy of the proposed model are illustrated and analyzed via. simulation tests in MATLAB Software. The results show the applicability of the PSO technique to solve the solar energy problems. This technique can be adopted as an effective tool to explore the optimal solutions for the growth of the power reduction of solar panels with the different environmental parameters and provided a design guideline for solar panel site

    Removal of dust from the solar panel surface using mechanical vibrator

    Get PDF
    Soiling and its effect on the performance of solar modules are generally of high concern for regions with a high deposition of dust and low frequency and less intensity of rainfall. The procedure of removing dust using traditional methods is capital and labour intensive. Additionally, most of the cleaning methods consumed power from the energy produced by the solar system. Therefore, the main objective of this study is to investigate the effect of vibration magnitude on the dust removal index of solar panel. In this work, wind energy was transformed into mechanical energy i.e. vibration. The mechanical vibrator attached to a panel produced harmonic excitation force to overcome the adhesive force between the dust particles and the surface of the solar panel. The generated vibration force has a linear relationship with the air velocity. This new designed and fabricated system was able to remove 3.5 gram of dust out of 5 grams on the panel with a vibration force of 3.128 N at a tilt angle of 15°. The new system has effectively proven that wind energy if being converted into vibration force can be used for dust removal from the solarpanel surface

    Optimization of wind-powered dust removal parameters for photovoltaics solar panel

    Get PDF
    The dust accumulation is an undesirable phenomenon in a solar plant environment. The procedure for removing dust using traditional techniques is capital and labour intensive. Additionally, most of the cleaning techniques consumed power from energy produced by the solar system. Therefore, the aim of this study is to develop a wind powered dust removal technique from the solar panel. This was done by transforming wind energy into mechanical energy as a new approach to sustainability via mechanical vibrator. The mechanical vibrator is attached to the panel and will produce a harmonic excitation force to overcome the adhesion force of dust onto solar panel surface. In this study, five levels of vibration forces were acquired through pre-experiment by varying the wind speed, while the range of the other working independent parameters such as dust quantity, dust size, wind speed and tilt angle of the solar panel were adopted from the previous studies. To determine how each of the parameters affects the dust removal index (DRI), a screening process was conducted using Plackett- Burman design (PBD) in Minitab with 12 runs each for the system with and without vortex generator. In response surface methodology (RSM) experiment, 50 runs were done for the optimizations of the working parameters with respect to DRI. The selection process was generally followed by statistical analysis known as Analysis of variance (ANOVA). Response Surface methodology (RSM) is an optimization method, which has been applied to optimization problems and provided a mathematical model for the DRI. Another model was built using another optimization technique called particle swarm optimization (PSO) and was used to verify the RSM model with modified code in MATLAB software. The proof of concept experiment clearly shows that with an increase in wind speed the vibrating force increases accordingly. Also, according to the screening process with PBD, the studied parameters have been arranged in order of their effect either high or low based on the assessment criteria outlined in PBD with and without vortex generators. The arrangement of the parameters based on their effect on DRI without VGs from high to low is different from the arrangement with VGs; this indicated that VGs have asignifacant effect on parameters. The incorporation of the vortex generator, the levels and behaviour of the parameters were changed and the mean value of DRI increased from 0.50 to 0.58. Analysis for the optimization of the working parameters reveals that RSM-DRI model revealed high significant performance with CoV and SD value of 4.51% and 0.0448 respectively. While PSO-DRI model has CoV and SD value of 4.55% and 0.0445 respectively. Therefore, RSM model helps a designer to select the most suitable site for the solar plant provided that the tilt angle is within the range of 15° to 35°. In conclusion, the use of wind energy via mechanical vibrator for dust removal has an efficiency of 91% when compared with a demonstrative electric vibrator for cleaning the same quantity of dust from the solar panel

    Дослідження розрахуночної температури окислення лопастів турбини з суперсплаву IN-738 LC з термічним покриттям AL2O3 з використанням процесу шламового покриття

    No full text
    The study aims to investigate the effect of Al2O3 and Al additions to Nickel-base superalloys as a coating layer on oxidation resistance, and structural behavior of nickel superalloys such as IN 738 LC. Nickel-base superalloys are popular as base materials for hot components in industrial gas turbines such as blades due to their superior mechanical performance and high-temperature oxidation resistance, but the combustion gases' existence generates hot oxidation at high temperatures for long durations of time, resulting in corrosion of turbine blades which lead to massive economic losses. Turbine blades used in Iraqi electrical gas power stations require costly maintenance using traditional processes regularly. These blades are made of nickel superalloys such as IN 738 LC(Inconel 738). Few scientists investigated the impact of Al2O3 or Al additions to Nickel-base superalloys as coating layer by using the slurry coating method on oxidation resistance to enhance the Nickel-base superalloy's oxidation resistance. In this study, IN 738 LC is coated with two different coating percentages, the first being (10 Al+90 Al2O3) and the second being (40 Al+60 Al2O3). Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD) were performed on all samples before and after oxidation. According to the results, SEM images of the surface revealed that the layer of the surface has a relatively moderated porosity value and that some of the coating layers contain micro-cracks. The best surface roughness of specimens coated with 60 % alumina+40 % aluminum was 5.752 nm. Whereas, the surface roughness of specimens coated with 90 % alumina+10 % aluminum was 6.367 nm.Results reveal that alloys with both Al2O3 and Al additions have reported a positive synergistic effect of the Al2O3and Al additions on oxidation resistance. Moreover,the NiCrAl2O3 thermal coating has good oxidation resistance and the effective temperature of anti-oxidation is raised to 1100 °C in turn reducing the maintenance period of turbine bladesДослідження спрямоване на вивчення впливу добавок Al2O3 та Al у суперсплави на основі нікелю як шар покриття на стійкість до окислення та структурну поведінку нікелевих суперсплавів, таких як IN 738 LC. Суперсплави на основі нікелю популярні як базові матеріали для гарячих компонентів промислових газових турбін, таких як лопатки, через їх чудові механічні характеристики та стійкість до високотемпературного окислення, але наявність продуктів згоряння викликає гаряче окислення при високих температурах протягом тривалого часу. що призводить до корозії лопаток турбіни, що призводить до величезних економічних втрат. Лопатки турбін, які використовуються на іракських газових електростанціях, потребують регулярного дорогого обслуговування з використанням традиційних процесів. Ці леза виготовлені із суперсплавів нікелю, таких як IN 738 LC (Inconel 738). Деякі вчені досліджували вплив добавок Al2O3 або Al у суперсплави на основі нікелю як шар покриття з використанням методу покриття суспензією на стійкість до окислення для підвищення стійкості до окислення суперсплаву на основі нікелю. У цьому дослідженні на IN 738 LC нанесено покриття з двома різними відсотковими вмістами покриття, перше з яких становить (10 Al+90 Al2O3), а друге – (40 Al+60 Al2O3). Скануючий електронний мікроскоп (SEM) та рентгенівська дифракція (XRD) були виконані для всіх зразків до та після окислення. За результатами СЕМ-зображень поверхні встановлено, що поверхневий шар має відносно помірне значення пористості, а деякі шари покриття містять мікротріщини. Найкраща шорсткість поверхні зразків, покритих 60% оксиду алюмінію + 40% алюмінію, становила 5752 нм. Тоді як шорсткість поверхні зразків, покритих 90% оксиду алюмінію + 10% алюмінію, становила 6367 нм. Результати показують, що сплави з добавками Al2O3, так і Al показали позитивний синергетичний ефект добавок Al2O3 і Al на стійкість до окислення. Крім того, термічне покриття NiCrAl2O3 має хорошу стійкість до окислення, а ефективна температура антиокислення підвищена до 1100 °C, що, у свою чергу, скорочує період обслуговування лопаток турбін

    Numerical analysis for solar panel subjected to an external force to overcome adhesive force in desert areas

    Get PDF
    The dust accumulation is an undesirable phenomenon in a solar plant environment. The dust removing procedures were using traditional techniques which are led to more loss in power especially in desert areas. Additionally, most of the cleaning techniques are designed according to the concept of vanquishing the adhesive force of dust particles by adding a harmonic excitation force. This force may produce damage to the solar panel. Therefore, the main objective of the current study is to simulate a traditional solar panel model BSP32-10 with ANSYS software throw an additional external force (2, 4, 6, 10, and 15 Newton) throws six mode shapes and verified experimentally. Deformation values of solar panel surface increase with an increase in excitation force, and not exceed the natural frequency deformation, with average values from 0.07 to 1.5 mm, while 94% of these results are close to experimental work during verification action. Middle position of the solar panel for excitation force on the solar panel in the dust removal concept is the best position
    corecore