79 research outputs found

    A study of the gas-phase reactions of various cations with two derivatives of SF6 : SF5CF3 and SF5Cl

    Get PDF
    A selected ion flow tube apparatus was used to investigate the positive ion chemistry of two derivatives of SF6_6; SF5_5CF3_3 and SF5_5Cl. This represents the first investigation of the positive ion chemistry of SF5_5Cl, and much of the data on SF5_5CF3_3 is being presented here for the first time. Rate coefficients and ion product branching ratios have been determined at room temperature (300 K) for reactions with the following twenty-two cations; Ne+^+, F+^+, Ar+^+, N2+_2^+, N+^+, CO+^+, CO2+_2^+, O+^+, N2_2O+^+, H2_2O+^+, O2+_2^+, SF4+^+, CF2+_2^+, SF+^+, SF2+_2^+, NO2+_2^+, SF5+_5^+, NO+^+, CF+^+, CF3+_3^+, SF3+_3^+, and H3_3O+^+ (listed in order of decreasing recombination energy). Comparisons are made in the text for the reactions of these ions with SF6_6. SF2+_2^+, NO2+_2^+, NO+^+, SF3+_3^+, and H3_3O+^+ are found to be unreactive with both of the derivatives. The majority of the other reactions proceed with rate coefficients which are close to the capture value. The exceptions are the reactions of O2+_2^+, SF+^+, SF5+_5^+, and CF3+_3^+ with SF5_5CF3_3, and SF4+^+ and SF5+_5^+ with SF5_5Cl, all of which have rate coefficients significantly less than the capture mechanism value. Several distinct processes are observed among the large number of reactions studied, including dissociative charge transfer and various abstraction channels. Non-dissociative charge transfer is not observed, implying that any parent ions formed dissociate rapidly to the fragment ions and associated neutrals

    Investigation into the animal species contents of popular wet pet foods

    Get PDF
    Background: The use of the generic term “meat and animal derivatives” in declared ingredient lists of pet foods in the European Union is virtually universal. In the wake of the 2013 “horse meat scandal” in the human food chain, we examined the presence and authenticity of animal sources (cow, chicken, pig and horse) of proteins in a range of popular wet pet foods in the United Kingdom.Findings: Seventeen leading dog and cat foods were sampled for the relative presence of DNA from each of the four animal species by quantitative real-time polymerase chain reaction. No horse DNA was detected. However, there was detection at substantial levels of unspecified animal species in most products tested. In 14 out of 17 samples, bovine, porcine and chicken DNA were found in various proportions and combinations but were not explicitly identified on the product labels. Of the 7 products with prominent headline descriptions containing the term “with beef”, only 2 were found to contain more bovine DNA (>50%) than pig and chicken DNA combined.Conclusions: There is a need for the pet food industry to show greater transparency to customers in the disclosure of the types of animal proteins (animal species and tissue types) in their products. Full disclosure of animal contents will (a) allow more informed choices to be made on purchases which are particularly important for pets with food allergies, (b) reduce the risk of product misinterpretation by shoppers, and (c) avoid potential religious concerns

    Genome analysis of a simultaneously predatory and prey-independent, novel Bdellovibrio bacteriovorus from the River Tiber, supports in silico predictions of both ancient and recent lateral gene transfer from diverse bacteria

    Get PDF
    Background: Evolution equipped Bdellovibrio bacteriovorus predatory bacteria to invade other bacteria, digesting and replicating, sealed within them thus preventing nutrient-sharing with organisms in the surrounding environment. Bdellovibrio were previously described as “obligate predators” because only by mutations, often in gene bd0108, are 1 in ~1x107 of predatory lab strains of Bdellovibrio converted to prey-independent growth. A previous genomic analysis of B. bacteriovorus strain HD100 suggested that predatory consumption of prey DNA by lytic enzymes made Bdellovibrio less likely than other bacteria to acquire DNA by lateral gene transfer (LGT). However the Doolittle and Pan groups predicted, in silico, both ancient and recent lateral gene transfer into the B. bacteriovorus HD100 genome. Results: To test these predictions, we isolated a predatory bacterium from the River Tiber- a good potential source of LGT as it is rich in diverse bacteria and organic pollutants- by enrichment culturing with E. coli prey cells. The isolate was identified as B. bacteriovorus and named as strain Tiberius. Unusually, this Tiberius strain showed simultaneous prey-independent growth on organic nutrients and predatory growth on live prey. Despite the prey-independent growth, the homolog of bd0108 did not have typical prey-independent-type mutations. The dual growth mode may reflect the high carbon content of the river, and gives B. bacteriovorus Tiberius extended non-predatory contact with the other bacteria present. The HD100 and Tiberius genomes were extensively syntenic despite their different cultured-terrestrial/freshly-isolated aquatic histories; but there were significant differences in gene content indicative of genomic flux and LGT. Gene content comparisons support previously published in silico predictions for LGT in strain HD100 with substantial conservation of genes predicted to have ancient LGT origins but little conservation of AT-rich genes predicted to be recently acquired. Conclusions: The natural niche and dual predatory, and prey-independent growth of the B. bacteriovorus Tiberius strain afforded it extensive non-predatory contact with other marine and freshwater bacteria from which LGT is evident in its genome. Thus despite their arsenal of DNA-lytic enzymes; Bdellovibrio are not always predatory in natural niches and their genomes are shaped by acquiring whole genes from other bacteria

    Prophylactic Delivery of a Bacteriophage Cocktail in Feed Significantly Reduces Salmonella Colonization in Pigs

    Get PDF
    Nontyphoidal Salmonella spp. are a leading cause of human food poisoning and can be transmitted to humans via consuming contaminated pork. To reduce Salmonella spread to the human food chain, bacteriophage (phage) therapy could be used to reduce bacteria from animals' preslaughter. We aimed to determine if adding a two-phage cocktail to feed reduces Salmonella colonization in piglets. This first required spray drying phages to allow them to be added as a powder to feed, and phages were spray dried in different excipients to establish maximum recovery. Although laboratory phage yields were not maintained during scale up in a commercial spray dryer (titers fell from 3 × 108 to 2.4 × 106 PFU/g respectively), the phage titers were high enough to progress. Spray dried phages survived mixing and pelleting in a commercial feed mill, and sustained no further loss in titer when stored at 4°C or barn conditions over 6 months. Salmonella-challenged piglets that were prophylactically fed the phage-feed diet had significantly reduced Salmonella colonization in different gut compartments (P < 0.01). 16S rRNA gene sequencing of fecal and gut samples showed phages did not negatively impact microbial communities as they were similar between healthy control piglets and those treated with phage. Our study shows delivering dried phages via feed effectively reduces Salmonella colonization in pigs. Infections caused by Salmonella spp. cause 93.8 million cases of human food poisoning worldwide, each year of which 11.7% are due to consumption of contaminated pork products. An increasing number of swine infections are caused by multidrug-resistant (MDR) Salmonella strains, many of which have entered, and continue to enter the human food chain. Antibiotics are losing their efficacy against these MDR strains, and thus antimicrobial alternatives are needed. Phages could be developed as an alternative approach, but research is required to determine the optimal method to deliver phages to pigs and to determine if phage treatment is effective at reducing Salmonella colonization in pigs. The results presented in this study address these two aspects of phage development and show that phages delivered via feed prophylactically to pigs reduces Salmonella colonization in challenged pigs

    Dual predation by bacteriophage and bdellovibrio bacteriovorus can eradicate escherichia coli prey in situations where single predation cannot

    Get PDF
    Copyright © 2020 Hobley et al. Bacteria are preyed upon by diverse microbial predators, including bacteriophage and predatory bacteria, such as Bdellovibrio bacteriovorus. While bacteriophage are used as antimicrobial therapies in Eastern Europe and are being applied for compassionate use in the United States, predatory bacteria are only just beginning to reveal their potential therapeutic uses. However, predation by either predator type can falter due to different adaptations arising in the prey bacteria. When testing poultry farm wastewater for novel Bdellovibrio isolates on Escherichia coli prey lawns, individual composite plaques were isolated containing both an RTP (rosette-tailed-phage)-like-phage and a B. bacteriovorus strain and showing central prey lysis and halos of extra lysis. Combining the purified phage with a lab strain of B. bacteriovorus HD100 recapitulated haloed plaques and increased killing of the E. coli prey in liquid culture, showing an effective side-by-side action of these predators compared to their actions alone. Using approximate Bayesian computation to select the best fitting from a variety of different mathematical models demonstrated that the experimental data could be explained only by assuming the existence of three prey phenotypes: (i) sensitive to both predators, (ii) genetically resistant to phage only, and (iii) plastic resistant to B. bacteriovorus only. Although each predator reduces prey availability for the other, high phage numbers did not abolish B. bacteriovorus predation, so both predators are competent to coexist and are causing different selective pressures on the bacterial surface while, in tandem, controlling prey bacterial numbers efficiently. This suggests that combinatorial predator therapy could overcome problems of phage resistance. Importance: With increasing levels of antibiotic resistance, the development of alternative antibacterial therapies is urgently needed. Two potential alternatives are bacteriophage and predatory bacteria. Bacteriophage therapy has been used, but prey/host specificity and the rapid acquisition of bacterial resistance to bacteriophage are practical considerations. Predatory bacteria are of interest due to their broad Gram-negative bacterial prey range and the lack of simple resistance mechanisms. Here, a bacteriophage and a strain of Bdellovibrio bacteriovorus, preyed side by side on a population of E. coli, causing a significantly greater decrease in prey numbers than either alone. Such combinatorial predator therapy may have greater potential than individual predators since prey surface changes selected for by each predator do not protect prey against the other predator

    Exposure to blue light reduces antimicrobial resistant Pseudomonas aeruginosa isolated from dog ear infections

    Get PDF
    Introduction: Pseudomonas aeruginosa is a leading cause of canine otitis externa. Enrofloxacin is often applied topically to treat this condition, although recalcitrant and recurring infections are common. There is evidence that exposure to blue light (400–470 nm) has a bactericidal effect on P. aeruginosa and other microorganisms.Methods: In the present study, we tested the biocidal effect of blue light (375–450 nm), alone or in combination with enrofloxacin, against six isolates of P. aeruginosa from dogs with otitis externa (5 of which were resistant to enrofloxacin).Results: Treatment of planktonic cell cultures with blue light resulted in significant (p < 0.5) reductions in Colony Forming Units (CFU) for all seven strains tested, in some cases below the limit of detection. The greatest bactericidal effect was observed following exposure to light at 405 nm wavelength (p <0.05). Exposure to blue light for 20 min usually resulted in a greater reduction in Pseudomonas aeruginosa than enrofloxacin treatment, and combination treatment typically resulted in the largest reductions in CFU. Analysis of the genome sequences of these strains established that enrofloxacin resistance was likely the result of a S466F substitution in GyrB. However, there was no clear association between genotype and susceptibility to blue light treatment. Discussion: These results suggest that blue light treatment, particularly at 405 nm wavelength, and especially in combination with enrofloxacin therapy, could be an effective treatment for otherwise recalcitrant canine otitis externa causedby Pseudomonas aeruginosa. It may also provide a way of extending the usefulness of enrofloxacin therapy which would otherwise be ineffective as a sole therapeutic agent

    Genetically manipulated phages with improved pH resistance for oral administration in veterinary medicine

    Get PDF
    Orally administered phages to control zoonotic pathogens face important challenges, mainly related to the hostile conditions found in the gastrointestinal tract (GIT). These include temperature, salinity and primarily pH, which is exceptionally low in certain compartments. Phage survival under these conditions can be jeopardized and undermine treatment. Strategies like encapsulation have been attempted with relative success, but are typically complex and require several optimization steps. Here we report a simple and efficient alternative, consisting in the genetic engineering of phages to display lipids on their surfaces. Escherichia coli phage T7 was used as a model and the E. coli PhoE signal peptide was genetically fused to its major capsid protein (10A), enabling phospholipid attachment to the phage capsid. The presence of phospholipids on the mutant phages was confirmed by High Performance Thin Layer Chromatography, Dynamic Light Scattering and phospholipase assays. The stability of phages was analysed in simulated GIT conditions, demonstrating improved stability of the mutant phages with survival rates 102107 pfu.mL1 higher than wild-type phages. Our work demonstrates that phage engineering can be a good strategy to improve phage tolerance to GIT conditions, having promising application for oral administration in veterinary medicine.This work was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and under the scope of the Project PTDC/BBB-BSS/6471/2014 (POCI-01-0145-FEDER-016678). Franklin L. Nobrega and Ana Rita Costa acknowledge FCT for grants SFRH/BD/86462/2012 and SFRH/BPD/94648/2013, respectively. Melvin F. Siliakus acknowledges funding from the Biobased Ecologically Balanced Sustainable Industrial Chemistry (BE-BASIC) foundation. Electron microscopy work was performed at the Wageningen Electron Microscopy Centre (WEMC) of Wageningen University

    Impaired Small-World Network Efficiency and Dynamic Functional Distribution in Patients with Cirrhosis

    Get PDF
    Hepatic encephalopathy (HE) is a complex neuropsychiatric syndrome and a major complication of liver cirrhosis. Dysmetabolism of the brain, related to elevated ammonia levels, interferes with intercortical connectivity and cognitive function. For evaluation of network efficiency, a ‘small-world’ network model can quantify the effectiveness of information transfer within brain networks. This study aimed to use small-world topology to investigate abnormalities of neuronal connectivity among widely distributed brain regions in patients with liver cirrhosis using resting-state functional magnetic resonance imaging (rs-fMRI). Seventeen cirrhotic patients without HE, 9 with minimal HE, 9 with overt HE, and 35 healthy controls were compared. The interregional correlation matrix was obtained by averaging the rs-fMRI time series over all voxels in each of the 90 regions using the automated anatomical labeling model. Cost and correlation threshold values were then applied to construct the functional brain network. The absolute and relative network efficiencies were calculated; quantifying distinct aspects of the local and global topological network organization. Correlations between network topology parameters, ammonia levels, and the severity of HE were determined using linear regression and ANOVA. The local and global topological efficiencies of the functional connectivity network were significantly disrupted in HE patients; showing abnormal small-world properties. Alterations in regional characteristics, including nodal efficiency and nodal strength, occurred predominantly in the association, primary, and limbic/paralimbic regions. The degree of network organization disruption depended on the severity of HE. Ammonia levels were also significantly associated with the alterations in local network properties. Results indicated that alterations in the rs-fMRI network topology of the brain were associated with HE grade; and that focal or diffuse lesions disturbed the functional network to further alter the global topology and efficiency of the whole brain network. These findings provide insights into the functional changes in the human brain in HE

    An Eye to a Kill: Using Predatory Bacteria to Control Gram-Negative Pathogens Associated with Ocular Infections

    Get PDF
    Ocular infections are a leading cause of vision loss. It has been previously suggested that predatory prokaryotes might be used as live antibiotics to control infections. In this study, Pseudomonas aeruginosa and Serratia marcescens ocular isolates were exposed to the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. All tested S. marcescens isolates were susceptible to predation by B. bacteriovorus strains 109J and HD100. Seven of the 10 P. aeruginosa isolates were susceptible to predation by B. bacteriovorus 109J with 80% being attacked by M. aeruginosavorus. All of the 19 tested isolates were found to be sensitive to at least one predator. To further investigate the effect of the predators on eukaryotic cells, human corneal-limbal epithelial (HCLE) cells were exposed to high concentrations of the predators. Cytotoxicity assays demonstrated that predatory bacteria do not damage ocular surface cells in vitro whereas the P. aeruginosa used as a positive control was highly toxic. Furthermore, no increase in the production of the proinflammatory cytokines IL-8 and TNF-alpha was measured in HCLE cells after exposure to the predators. Finally, injection of high concentration of predatory bacteria into the hemocoel of Galleria mellonella, an established model system used to study microbial pathogenesis, did not result in any measurable negative effect to the host. Our results suggest that predatory bacteria could be considered in the near future as a safe topical bio-control agent to treat ocular infections. © 2013 Shanks et al
    corecore