49 research outputs found

    an analysis

    Get PDF
    Water footprint (WF) reflects how efficiently water has been utilized in the production cycle of a particular product or service. Under the production conditions of the farm of the Faculty of Agriculture, University of Ruhuna, Sri Lanka studied, the WF of Chicken Egg was calculated as 3734 m3/ton. Other than drinking and servicing water, feed water accounted over 99% of the WF of egg production. It is concluded that through appropriate interventions, both at policy and industry level, water footprint of egg production systems can be lowered substantially

    A First-Principles Computational Study of Structural and Elastic Properties of ZnO

    Full text link
    The purpose of this study is to determine structural and mechanical properties of zinc oxide (ZnO) using first-principles computational methods. ZnO is a semiconductor widely used in many electronic and optical applications. ZnO is also economically and environmentally desirable – first, both the constituent elements are abundant on Earth and therefore inexpensive for large-scale applications; second, it is non- toxic. The most significant contribution of this study is the simulations of the high-pressure phases. These high-pressure simulations are important because the rock salt phase of ZnO obtained at high pressure can be recovered at ambient pressure, and this new structural phase possesses different properties that may be more useful for certain applications

    McNair Research Journal - Summer 2015

    Full text link
    Journal articles based on research conducted by undergraduate students in the McNair Scholars Program Table of Contents Biography of Dr. Ronald E. McNair Statements: Dr. Neal J. Smatresk, UNLV President Dr. Juanita P. Fain, Vice President of Student Affairs Dr. William W. Sullivan, Associate Vice President for Retention and Outreach Mr. Keith Rogers, Deputy Executive Director of the Center for Academic Enrichment and Outreach McNair Scholars Institute Staf

    The role of melanin pathways in extremotolerance and virulence of <em>Fonsecaea</em> revealed by <em>de novo</em> assembly transcriptomics using illumina paired-end sequencing

    Get PDF
    AbstractMelanisation has been considered to be an important virulence factor of Fonsecaea monophora. However, the biosynthetic mechanisms of melanisation remain unknown. We therefore used next generation sequencing technology to investigate the transcriptome and digital gene expression data, which are valuable resources to better understand the molecular and biological mechanisms regulating melanisation in F. monophora. We performed de novo transcriptome assembly and digital gene expression (DGE) profiling analyses of parent (CBS 122845) and albino (CBS 125194) strains using the Illumina RNA-seq system. A total of 17 352 annotated unigenes were found by BLAST search of NR, Swiss-Prot, Gene Ontology, Clusters of Orthologous Groups and Kyoto Encyclopedia of Genes and Genomes (KEGG) (E-value <1e‒5). A total of 2 283 unigenes were judged to be the differentially expressed between the two genotypes. We identified most of the genes coding for key enzymes involved in melanin biosynthesis pathways, including polyketide synthase (pks), multicopper oxidase (mco), laccase, tyrosinase and homogentisate 1,2-dioxygenase (hmgA). DEG analysis showed extensive down-regulation of key genes in the DHN pathway, while up-regulation was noted in the DOPA pathway of the albino mutant. The transcript levels of partial genes were confirmed by real time RT-PCR, while the crucial role of key enzymes was confirmed by either inhibitor or substrate tests in vitro. Meanwhile, numbers of genes involved in light sensing, cell wall synthesis, morphology and environmental stress were identified in the transcriptome of F. monophora. In addition, 3 353 SSRs (Simple Sequence Repeats) markers were identified from 21 600 consensus sequences. Blocking of the DNH pathway is the most likely reason of melanin deficiency in the albino strain, while the production of pheomelanin and pyomelanin were probably regulated by unknown transcription factors on upstream of both pathways. Most of genes involved in environmental tolerance to oxidants, irradiation and extreme temperatures were also assembled and annotated in transcriptomes of F. monophora. In addition, thousands of identified cSSR (combined SSR) markers will favour further genetic linkage studies. In conclusion, these data will contribute to understanding the regulation of melanin biosynthesis and help to improve the studies of pathogenicity of F. monophora

    Economic parameters in nutritional studies

    No full text
    Published in association with IDR
    corecore