1,429 research outputs found

    Dynamical Semigroups for Unbounded Repeated Perturbation of Open System

    Get PDF
    We consider dynamical semigroups with unbounded Kossakowski-Lindblad-Davies generators which are related to evolution of an open system with a tuned repeated harmonic perturbation. Our main result is the proof of existence of uniquely determined minimal trace-preserving strongly continuous dynamical semigroups on the space of density matrices. The corresponding dual W *-dynamical system is shown to be unital quasi-free and completely positive automorphisms of the CCR-algebra. We also comment on the action of dynamical semigroups on quasi-free states

    Relation between the Dynamics of the Reduced Purity and Correlations

    Full text link
    A general property of the relation between the dynamics of the reduced purity and correlations is investigated in quantum mechanical systems. We show that a non-zero time-derivative of the reduced purity of a system implies the existence of non-zero correlations with its environment under any unbounded Hamiltonians with finite variance. This shows the role of local dynamical information on the correlations, as well as the role of correlations in the mechanism of purity change.Comment: 7 page

    Origin of the excitonic recombinations in hexagonal boron nitride by spatially resolved cathodoluminescence spectroscopy

    Full text link
    The excitonic recombinations in hexagonal boron nitride (hBN) are investigated with spatially resolved cathodoluminescence spectroscopy in the UV range. Cathodoluminescence images of an individual hBN crystallite reveals that the 215 nm free excitonic line is quite homogeneously emitted along the crystallite whereas the 220 nm and 227 nm excitonic emissions are located in specific regions of the crystallite. Transmission electron microscopy images show that these regions contain a high density of crystalline defects. This suggests that both the 220 nm and 227 nm emissions are produced by the recombination of excitons bound to structural defects

    Homogeneous Open Quantum Random Walks on a lattice

    Full text link
    We study Open Quantum Random Walks for which the underlying graph is a lattice, and the generators of the walk are translation-invariant. We consider the quantum trajectory associated with the OQRW, which is described by a position process and a state process. We obtain a central limit theorem and a large deviation principle for the position process, and an ergodic result for the state process. We study in detail the case of homogeneous OQRWs on a lattice, with internal space h=C2h={\mathbb C}^2

    Non Markovian Quantum Repeated Interactions and Measurements

    Full text link
    A non-Markovian model of quantum repeated interactions between a small quantum system and an infinite chain of quantum systems is presented. By adapting and applying usual pro jection operator techniques in this context, discrete versions of the integro-differential and time-convolutioness Master equations for the reduced system are derived. Next, an intuitive and rigorous description of the indirect quantum measurement principle is developed and a discrete non Markovian stochastic Master equation for the open system is obtained. Finally, the question of unravelling in a particular model of non-Markovian quantum interactions is discussed.Comment: 22 page

    Optical Transitions in Single-Wall Boron Nitride Nanotubes

    Get PDF
    Optical transitions in single-wall boron nitride nanotubes are investigated by means of optical absorption spectroscopy. Three absorption lines are observed. Two of them (at 4.45 and 5.5 eV) result from the quantification involved by the rolling up of the hexagonal boron nitride (h-BN) sheet. The nature of these lines is discussed, and two interpretations are proposed. A comparison with single-wall carbon nanotubes leads one to interpret these lines as transitions between pairs of van Hove singularities in the one-dimensional density of states of boron nitride single-wall nanotubes. But the confinement energy due to the rolling up of the h-BN sheet cannot explain a gap width of the boron nitride nanotubes below the h-BN gap. The low energy line is then attributed to the existence of a Frenkel exciton with a binding energy in the 1 eV range

    Preliminary design of a new high intensity injection system for GANIL.

    Get PDF
    http://accelconf.web.cern.ch/AccelConf/c89/papers/f6-12.pdfInternational audienc
    corecore