1,092 research outputs found

    Giant planets: Clues on current and past organic chemistry in the outer solar system

    Get PDF
    The giant planets of the outer solar system - Jupiter, Saturn, Uranus, and Neptune - were formed in the same flattened disk of gas and dust, the solar nebula, as the terrestrial planets were. Yet, the giant planets differ in some very fundamental ways from the terrestrial planets. Despite enormous differences, the giant planets are relevant to exobiology in general and the origin of life on the Earth in particular. The giant planets are described as they are today. Their basic properties and the chemistry occurring in their atmospheres is discussed. Theories of their origin are explored and aspects of these theories that may have relevance to exobiology and the origin of life on Earth are stressed

    Photochemistry of Planetary Atmospheres

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94723/1/eost12487.pd

    Book Review: Physics and Chemistry of the Upper Atmosphere

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94675/1/eost8433.pd

    Saturn's Exploration Beyond Cassini-Huygens

    Get PDF
    For its beautiful rings, active atmosphere and mysterious magnetic field, Saturn is a fascinating planet. It also holds some of the keys to understanding the formation of our Solar System and the evolution of giant planets in general. While the exploration by the Cassini-Huygens mission has led to great advances in our understanding of the planet and its moons, it has left us with puzzling questions: What is the bulk composition of the planet? Does it have a helium core? Is it enriched in noble gases like Jupiter? What powers and controls its gigantic storms? We have learned that we can measure an outer magnetic field that is filtered from its non-axisymmetric components, but what is Saturn's inner magnetic field? What are the rings made of and when were they formed? These questions are crucial in several ways: a detailed comparison of the compositions of Jupiter and Saturn is necessary to understand processes at work during the formation of these two planets and of the Solar System. This calls for the continued exploration of the second largest planet in our Solar System, with a variety of means including remote observations and space missions. Measurements of gravity and magnetic fields very close to the planet's cloud tops would be extremely valuable. Very high spatial resolution images of the rings would provide details on their structure and the material that form them. Last but not least, one or several probes sent into the atmosphere of the planet would provide the critical measurements that would allow a detailed comparison with the same measurements at Jupiter. [abridged abstract

    Observations of the Io plasma torus

    Get PDF
    The short wavelength spectrography on the IUE satellite was used to obtain spectra of the plasma torus near the orbit of Io about Jupiter. Three exposures of about 8 hours each taken in March and May 1979 show emission features due to SII, SIII, and OIII. The absence of features at other wavelengths permits upper limits to be other species in the torus

    Stratospheric aerosols from CH 4 photochemistry on Neptune

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95495/1/grl4442.pd

    Observations of polar aurora on Jupiter

    Get PDF
    North-south spatial maps of Jupiter were obtained with the SWP camera in IUE observations of 10 December 1978, 19 May 1979, and 7 June 1979. Bright auroral emissions were detected from the north and south polar regions at H Ly alpha (1216 A) and in the H2 Lyman bands (1250-1608 A) on 19 May 1979; yet no enhanced polar emission was detected on the other days. The relationship between the IUE observing geometry and the geometry of the Jovian magnetosphere is discussed

    Clouds of Neptune and Uranus

    Get PDF
    We present results on the bases and concentrations of methane ice, ammonia ice, ammonium hydrosulfide-solid, water ice, and aqueous-ammonia solution (droplet) clouds of Neptune and Uranus, based on an equilibrium cloud condensation model. Due to their similar p-T structures, the model results for Neptune and Uranus are similar. Assuming 30-50x solar enhancement for the condensibles species, as expected from formation models, we find that the base of the droplet cloud is at the 370 bars for 30 solar, and at 500 bars for 50 solar cases. Despite this, entry probes need to be deployed to only 50-100 bars to obtain all the critical information needed to constrain models of the formation of these planets and their atmospheres
    • …
    corecore