491 research outputs found

    Multiplicative renormalizability and quark propagator

    Get PDF
    The renormalized Dyson-Schwinger equation for the quark propagator is studied, in Landau gauge, in a novel truncation which preserves multiplicative renormalizability. The renormalization constants are formally eliminated from the integral equations, and the running coupling explicitly enters the kernels of the new equations. To construct a truncation which preserves multiplicative renormalizability, and reproduces the correct leading order perturbative behavior, non-trivial cancellations involving the full quark-gluon vertex are assumed in the quark self-energy loop. A model for the running coupling is introduced, with infrared fixed point in agreement with previous Dyson-Schwinger studies of the gauge sector, and with correct logarithmic tail. Dynamical chiral symmetry breaking is investigated, and the generated quark mass is of the order of the extension of the infrared plateau of the coupling, and about three times larger than in the Abelian approximation, which violates multiplicative renormalizability. The generated scale is of the right size for hadronic phenomenology, without requiring an infrared enhancement of the running coupling.Comment: 17 pages; minor corrections, comparison to lattice results added; accepted for publication in Phys. Rev.

    Spontaneous Chiral-Symmetry Breaking in Three-Dimensional QED with a Chern--Simons Term

    Full text link
    In three-dimensional QED with a Chern--Simons term we study the phase structure associated with chiral-symmetry breaking in the framework of the Schwinger--Dyson equation. We give detailed analyses on the analytical and numerical solutions for the Schwinger--Dyson equation of the fermion propagator, where the nonlocal gauge-fixing procedure is adopted to avoid wave-function renormalization for the fermion. In the absence of the Chern--Simons term, there exists a finite critical number of four-component fermion flavors, at which a continuous (infinite-order) chiral phase transition takes place and below which the chiral symmetry is spontaneously broken. In the presence of the Chern--Simons term, we find that the spontaneous chiral-symmetry-breaking transition continues to exist, but the type of phase transition turns into a discontinuous first-order transition. A simple stability argument is given based on the effective potential, whose stationary point gives the solution of the Schwinger-Dyson equation.Comment: 34 pages, revtex, with 9 postscriptfigures appended (uuencoded

    The π\pi, K+K^+, and K0K^0 electromagnetic form factors

    Full text link
    The rainbow truncation of the quark Dyson-Schwinger equation is combined with the ladder Bethe-Salpeter equation for the meson amplitudes and the dressed quark-photon vertex in a self-consistent Poincar\'e-invariant study of the pion and kaon electromagnetic form factors in impulse approximation. We demonstrate explicitly that the current is conserved in this approach and that the obtained results are independent of the momentum partitioning in the Bethe-Salpeter amplitudes. With model gluon parameters previously fixed by the condensate, the pion mass and decay constant, and the kaon mass, the charge radii and spacelike form factors are found to be in good agreement with the experimental data.Comment: 8 pages, 6 figures, Revte

    Magnetic levitation stabilized by streaming fluid flows

    Get PDF
    We demonstrate that the ubiquitous laboratory magnetic stirrer provides a simple passive method of magnetic levitation, in which the so-called “flea” levitates indefinitely. We study the onset of levitation and quantify the flea’s motion (a combination of vertical oscillation, spinning and “waggling”), finding excellent agreement with a mechanical analytical model. The waggling motion drives recirculating flow, producing a centripetal reaction force that stabilized the flea. Our findings have implications for the locomotion of artificial swimmers and the development of bidirectional microfluidic pumps, and they provide an alternative to sophisticated commercial levitators

    Power spectrum of many impurities in a d-wave superconductor

    Full text link
    Recently the structure of the measured local density of states power spectrum of a small area of the \BSCCO (BSCCO) surface has been interpreted in terms of peaks at an "octet" of scattering wave vectors determined assuming weak, noninterfering scattering centers. Using analytical arguments and numerical solutions of the Bogoliubov-de Gennes equations, we discuss how the interference between many impurities in a d-wave superconductor alters this scenario. We propose that the peaks observed in the power spectrum are not the features identified in the simpler analyses, but rather "background" structures which disperse along with the octet vectors. We further consider how our results constrain the form of the actual disorder potential found in this material.Comment: 5 pages.2 figure

    ONE LOOP QED VERTEX IN ANY COVARIANT GAUGE: ITS COMPLETE ANALYTIC FORM

    Get PDF
    The one loop vertex in QED is calculated in arbitrary covariant gauges as an analytic function of its momenta. The vertex is decomposed into a longitudinal part, that is fully responsible for ensuring the Ward and Ward-Takahashi identities are satisfied, and a transverse part. The transverse part is decomposed into 8 independent components each being separately free of kinematic singularities in any\bf any covariant gauge in a basis that modifies that proposed by Ball and Chiu. Analytic expressions for all 11 components of the O(α){O(\alpha)} vertex are given explicitly in terms of elementary functions and one Spence function. These results greatly simplify in particular kinematic regimes.Comment: 35 pages, latex, 2 figures, Complete postscript file available from: ftp://cpt1.dur.ac.uk/pub/preprints/dtp95/dtp9506/dtp9406.p

    The Quark-Photon Vertex and the Pion Charge Radius

    Full text link
    The rainbow truncation of the quark Dyson-Schwinger equation is combined with the ladder Bethe-Salpeter equation for the dressed quark-photon vertex to study the low-momentum behavior of the pion electromagnetic form factor. With model gluon parameters previously fixed by the pion mass and decay constant, the pion charge radius rπr_\pi is found to be in excellent agreement with the data. When the often-used Ball-Chiu Ansatz is used to construct the quark-photon vertex directly from the quark propagator, less than half of rπ2r_\pi^2 is generated. The remainder of rπ2r^2_\pi is seen to be attributable to the presence of the ρ\rho-pole in the solution of the ladder Bethe-Salpeter equation.Comment: 21 pages, 9 figure

    A real-time PCR-based assay for detection of Wuchereria bancrofti DNA in blood and mosquitoes

    Get PDF
    We developed and evaluated real-time polymerase chain reaction (PCR) assays for detecting Wuchereria bancrofti DNA in human blood and in mosquitoes. An assay based on detection of the W. bancrofti “LDR” repeat DNA sequence was more sensitive than an assay for Wolbachia 16S rDNA. The LDR-based assay was sensitive for detecting microfilarial DNA on dried membrane filters or on filter paper. We also compared real-time PCR with conventional PCR (C-PCR) for detecting W. bancrofti DNA in mosquito samples collected in endemic areas in Egypt and Papua New Guinea. Although the two methods had comparable sensitivity for detecting filarial DNA in reference samples, real-time PCR was more sensitive than C-PCR in practice with field samples. Other advantages of real-time PCR include its high-throughput capacity and decreased risk of cross-contamination between test samples. We believe that real-time PCR has great potential as a tool for monitoring progress in large-scale filariasis elimination programs

    Couplings of light I=0 scalar mesons to simple operators in the complex plane

    Full text link
    The flavour and glue structure of the light scalar mesons in QCD are probed by studying the couplings of the I=0 mesons σ(600)\sigma(600) and f0(980)f_0(980) to the operators qˉq\bar{q}q, αsG2\alpha_s G^2 and to two photons. The Roy dispersive representation for the ππ\pi\pi amplitude t00(s)t_0^0(s) is used to determine the pole positions as well as the residues in the complex plane. On the real axis, t00t_0^0 is constrained to solve the Roy equation together with elastic unitarity up to the K\Kbar threshold leading to an improved description of the f0(980)f_0(980). The problem of using a two-particle threshold as a matching point is discussed. A simple relation is established between the coupling of a scalar meson to an operator jSj_S and the value of the related pion form-factor computed at the resonance pole. Pion scalar form-factors as well as two-photon partial-wave amplitudes are expressed as coupled-channel Omn\`es dispersive representations. Subtraction constants are constrained by chiral symmetry and experimental data. Comparison of our results for the qˉq\bar{q}q couplings with earlier determinations of the analogous couplings of the lightest I=1 and I=1/2I=1/2 scalar mesons are compatible with an assignment of the σ\sigma, κ\kappa, a0(980)a_0(980), f0(980)f_0(980) into a nonet. Concerning the gluonic operator αsG2\alpha_s G^2 we find a significant coupling to both the σ\sigma and the f0(980)f_0(980).Comment: 31 pages, 5 figure

    Chiral Dynamics and Fermion Mass Generation in Three Dimensional Gauge Theory

    Full text link
    We examine the possibility of fermion mass generation in 2+1- dimensional gauge theory from the current algebra point of view.In our approach the critical behavior is governed by the fluctuations of pions which are the Goldstone bosons for chiral symmetry breaking. Our analysis supports the existence of an upper critical number of Fermion flavors and exhibits the explicit form of the gap equation as well as the form of the critical exponent for the inverse correlation lenght of the order parameterComment: Latex,10 pages,DFUPG 70/9
    corecore