16,587 research outputs found
The geometrically-averaged density of states as a measure of localization
Motivated by current interest in disordered systems of interacting electrons,
the effectiveness of the geometrically averaged density of states,
, as an order parameter for the Anderson transition is
examined. In the context of finite-size systems we examine complications which
arise from finite energy resolution. Furthermore we demonstrate that even in
infinite systems a decline in with increasing disorder
strength is not uniquely associated with localization.Comment: 8 pages, 8 figures; revised text and figure
Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens.
The atmospheric chemistry of the 2- to 4-ring polycyclic aromatic hydrocarbons (PAH), which exist mainly in the gas phase in the atmosphere, is discussed. The dominant loss process for the gas-phase PAH is by reaction with the hydroxyl radical, resulting in calculated lifetimes in the atmosphere of generally less than one day. The hydroxyl (OH) radical-initiated reactions and nitrate (NO3) radical-initiated reactions often lead to the formation of mutagenic nitro-PAH and other nitropolycyclic aromatic compounds, including nitrodibenzopyranones. These atmospheric reactions have a significant effect on ambient mutagenic activity, indicating that health risk assessments of combustion emissions should include atmospheric transformation products
Antimatter, Lorentz Symmetry, and Gravity
A brief introduction to the Standard-Model Extension (SME) approach to
testing CPT and Lorentz symmetry is provided. Recent proposals for tests with
antimatter are summarized, including gravitational and spectroscopic tests.Comment: Presented at the 12th International Conference on Low Energy
Antiproton Physics, Kanazawa Japan, March 6-11, 2016, Accepted for
publication in JPS Conference Proceeding
Disorder and chain superconductivity in YBa_2Cu_3O_{7-\delta}
The effects of chain disorder on superconductivity in YBa_2Cu_3O_{7-\delta}
are discussed within the context of a proximity model. Chain disorder causes
both pair-breaking and localization. The hybridization of chain and plane
wavefunctions reduces the importance of localization, so that the transport
anisotropy remains large in the presence of a finite fraction of
oxygen vacancies. Penetration depth and specific heat measurements probe the
pair-breaking effects of chain disorder, and are discussed in detail at the
level of the self-consistent T-matrix approximation. Quantitative agreement
with these experiments is found when chain disorder is present.Comment: 4 pages, 2 figures, submitted to PRB rapid communication
On the precision of chiral-dispersive calculations of scattering
We calculate the combination (the Olsson sum rule)
and the scattering lengths and effective ranges , and ,
dispersively (with the Froissart--Gribov representation) using, at
low energy, the phase shifts for scattering obtained by Colangelo,
Gasser and Leutwyler (CGL) from the Roy equations and chiral perturbation
theory, plus experiment and Regge behaviour at high energy, or directly, using
the CGL parameters for s and s. We find mismatch, both among the CGL
phases themselves and with the results obtained from the pion form factor. This
reaches the level of several (2 to 5) standard deviations, and is essentially
independent of the details of the intermediate energy region ( GeV) and, in some cases, of the high energy behaviour assumed. We discuss
possible reasons for this mismatch, in particular in connection with an
alternate set of phase shifts.Comment: Version to appear in Phys. Rev. D. Graphs and sum rule added. Plain
TeX fil
The impact of asking intention or self-prediction questions on subsequent behavior: a meta-analysis
The current meta-analysis estimated the magnitude of the impact of asking intention and self-prediction questions on rates of subsequent behavior, and examined mediators and moderators of this question–behavior effect (QBE). Random-effects meta-analysis on 116 published tests of the effect indicated that intention/prediction questions have a small positive effect on behavior (d+ = 0.24). Little support was observed for attitude accessibility, cognitive dissonance, behavioral simulation, or processing fluency explanations of the QBE. Multivariate analyses indicated significant effects of social desirability of behavior/behavior domain (larger effects for more desirable and less risky behaviors), difficulty of behavior (larger effects for easy-to-perform behaviors), and sample type (larger effects among student samples). Although this review controls for co-occurrence of moderators in multivariate analyses, future primary research should systematically vary moderators in fully factorial designs. Further primary research is also needed to unravel the mechanisms underlying different variants of the QBE
Infrared divergence in QED at finite temperature
We consider various ways of treating the infrared divergence which appears in
the dynamically generated fermion mass, when the transverse part of the photon
propagator in N flavour at finite temperature is included in the
Matsubara formalism. This divergence is likely to be an artefact of taking into
account only the leading order term in the expansion when we
calculate the photon propagator and is handled here phenomenologically by means
of an infrared cutoff. Inserting both the longitudinal and the transverse part
of the photon propagator in the Schwinger-Dyson equation we find the dependence
of the dynamically generated fermion mass on the temperature and the cutoff
parameters. It turns out that consistency with certain statistical physics
arguments imposes conditions on the cutoff parameters. For parameters in the
allowed range of values we find that the ratio is approximately 6, consistently with previous calculations which
neglected the transverse photon contribution.Comment: 37 pages, 12 figures, typos corrected, references added, Introduction
rewritte
The c axis optical conductivity of layered systems in the superconducting state
In this paper, we discuss the c axis optical conductivity Re [sigma_c(omega)]
in the high T_c superconductors, in the superconducting state. The basic
premise of this work is that electrons travelling along the c axis between
adjacent CuO_2 layers must pass through several intervening layers. In earlier
work we found that, for weak inter-layer coupling, it is preferable for
electrons to travel along the c axis by making a series of interband
transitions rather than to stay within a single (and very narrow) band.
Moreover, we found that many of the properties of the normal state optical
conductivity, including the pseudogap could be explained by interband
transitions. In this work we examine the effect of superconductivity on the
interband conductivity. We find that, while the onset of superconductivity is
clearly evident in the spectrum, there is no clear signature of the symmetry of
the superconducting order parameter.Comment: 6 pages, 4 figure
Ocean Chlorophyll Studies from a U-2 Aircraft Platform
Chlorophyll gradient maps of large ocean areas were generated from U-2 ocean color scanner data obtained over test sites in the Pacific and Atlantic Oceans. The delineation of oceanic features using the upward radiant intensity relies on an analysis method which presupposes that radiation backscattered from the atmosphere and ocean surface can be properly modeled using a measurement made at 778 nm. An estimation of the chlorophyll concentration was performed by properly ratioing radiances measured at 472 nm and 548 nm after removing the atmospheric effects. The correlation between the remotely sensed data and in-situ surface chlorophyll measurements was validated in two sets of data. The results show that the correlation between the in-situ measured chlorophyll and the derived quantity is a negative exponential function and the correlation coefficient was calculated to be -0.965
- …
