11 research outputs found

    Attentional and visual demands for sprint performance in non-fatigued and fatigued conditions: reliability of a repeated sprint test

    Get PDF
    Background: Physical performance measures are widely used to assess physical function, providing information about physiological and biomechanical aspects of motor performance. However they do not provide insight into the attentional and visual demands for motor performance. A figure-of-eight sprint test was therefore developed to measure the attentional and visual demands for repeated-sprint performance. The aims of the study were: 1) to assess test-retest reliability of the figure-of-eight sprint test, and 2) to study the attentional and visual demands for sprint performance in a non-fatigued and fatigued condition. Methods: Twenty-seven healthy athletes were included in the study. To determine test-retest reliability, a subgroup of 19 athletes performed the figure-of-eight sprint test twice. The figure-of-eight sprint test consisted of nine 30-second sprints. The sprint test consisted of three test parts: sprinting without any restriction, with an attention-demanding task, and with restricted vision. Increases in sprint times with the attention-demanding task or restricted vision are reflective of the attentional and visual demands for sprinting. Intraclass correlation coefficients (ICCs) and mean difference between test and retest with 95% confidence limits (CL) were used to assess test-retest reliability. Repeated-measures ANOVA were used for comparisons between the sprint times and fatigue measurements of the test parts in both a non-fatigued and fatigued condition. Results: The figure-of-eight sprint test showed good test-retest reliability, with ICCs ranging from 0.75 to 0.94 (95% CL: 0.40-0.98). Zero lay within the 95% CL of the mean differences, indicating that no bias existed between sprint performance at test and retest. Sprint times during the test parts with attention-demanding task (P = 0.01) and restricted vision (P < 0.001) increased significantly compared to the base measurement. Furthermore the sprint times and fatigue measurements increased significantly in fatigued condition. There was a significant interaction effect between test part and level of fatigue (P = 0.03). Conclusions: High ICCs and the absence of systematic variation indicate good test-retest reliability of the figure-of-eight sprint test. The attentional and visual demands for sprint performance, in both a non-fatigued and fatigued condition, can be measured in healthy team-sport athletes with the figure-of-eight sprint test

    The methanogenic redox cofactor F420 is widely synthesized by aerobic soil bacteria

    No full text
    F(420) is a low-potential redox cofactor that mediates the transformations of a wide range of complex organic compounds. Considered one of the rarest cofactors in biology, F(420) is best known for its role in methanogenesis and has only been chemically identified in two phyla to date, the Euryarchaeota and Actinobacteria. In this work, we show that this cofactor is more widely distributed than previously reported. We detected the genes encoding all five known F(420) biosynthesis enzymes (cofC, cofD, cofE, cofG and cofH) in at least 653 bacterial and 173 archaeal species, including members of the dominant soil phyla Proteobacteria, Chloroflexi and Firmicutes. Metagenome datamining validated that these genes were disproportionately abundant in aerated soils compared with other ecosystems. We confirmed through high-performance liquid chromatography analysis that aerobically grown stationary-phase cultures of three bacterial species, Paracoccus denitrificans, Oligotropha carboxidovorans and Thermomicrobium roseum, synthesized F(420), with oligoglutamate sidechains of different lengths. To understand the evolution of F(420) biosynthesis, we also analyzed the distribution, phylogeny and genetic organization of the cof genes. Our data suggest that although the F(o) precursor to F(420) originated in methanogens, F(420) itself was first synthesized in an ancestral actinobacterium. F(420) biosynthesis genes were then disseminated horizontally to archaea and other bacteria. Together, our findings suggest that the cofactor is more significant in aerobic bacterial metabolism and soil ecosystem composition than previously thought. The cofactor may confer several competitive advantages for aerobic soil bacteria by mediating their central metabolic processes and broadening the range of organic compounds they can synthesize, detoxify and mineralize

    Biochemische Adaptationen an edaphische und chemische Umweltfaktoren

    No full text

    A Model of Project Knowledge Management

    No full text
    corecore