4,846 research outputs found

    Sternal Wound Complications Following Cardiac Surgery

    Get PDF

    Habitual Alcohol Consumption and its Relationship to Physical Fitness in College - age Students

    Get PDF
    Click the PDF icon to download the abstract

    Study of Small-Scale Anisotropy of Ultrahigh Energy Cosmic Rays Observed in Stereo by HiRes

    Full text link
    The High Resolution Fly's Eye (HiRes) experiment is an air fluorescence detector which, operating in stereo mode, has a typical angular resolution of 0.6 degrees and is sensitive to cosmic rays with energies above 10^18 eV. HiRes is thus an excellent instrument for the study of the arrival directions of ultrahigh energy cosmic rays. We present the results of a search for anisotropies in the distribution of arrival directions on small scales (<5 degrees) and at the highest energies (>10^19 eV). The search is based on data recorded between 1999 December and 2004 January, with a total of 271 events above 10^19 eV. No small-scale anisotropy is found, and the strongest clustering found in the HiRes stereo data is consistent at the 52% level with the null hypothesis of isotropically distributed arrival directions.Comment: 4 pages, 3 figures. Matches accepted ApJL versio

    Design and Evaluation of a Percutaneous Fragment Manipulation Device for Minimally Invasive Fracture Surgery

    Get PDF
    Reduction of fractures in the minimally invasive (MI) manner can avoid risks associated with open fracture surgery. The MI approach requires specialized tools called percutaneous fragment manipulation devices (PFMD) to enable surgeons to safely grasp and manipulate fragments. PFMDs developed for long-bone manipulation are not suitable for intra-articular fractures where small bone fragments are involved. With this study, we offer a solution to potentially move the current fracture management practice closer to the use of a MI approach. We investigate the design and testing of a new PFMD design for manual as well as robot-assisted manipulation of small bone fragments. This new PFMD design is simulated using FEA in three loading scenarios (force/torque: 0 N/2.6 Nm, 75.7 N/3.5 N, 147 N/6.8 Nm) assessing structural properties, breaking points, and maximum bending deformations. The PFMD is tested in a laboratory setting on Sawbones models (0 N/2.6 Nm), and on ex-vivo swine samples (F = 80 N ± 8 N, F = 150 ± 15 N). A commercial optical tracking system was used for measuring PFMD deformations under external loading and the results were verified with an electromagnetic tracking system. The average error difference between the tracking systems was 0.5 mm, being within their accuracy limits. Final results from reduction maneuvers performed both manually and with the robot assistance are obtained from 7 human cadavers with reduction forces in the range of (F = 80 N ± 8 N, F = 150 ± 15 N, respectively). The results show that structurally, the system performs as predicted by the simulation results. The PFMD did not break during ex-vivo and cadaveric trials. Simulation, laboratory, and cadaveric tests produced similar results regarding the PFMD bending. Specifically, for forces applied perpendicularly to the axis of the PFMD of 80 N ± 8 N deformations of 2.8, 2.97, and 3.06 mm are measured on the PFMD, while forces of 150 ± 15 N produced deformations of 5.8, 4.44, and 5.19 mm. This study has demonstrated that the proposed PFMD undergoes predictable deformations under typical bone manipulation loads. Testing of the device on human cadavers proved that these deformations do not affect the anatomic reduction quality. The PFMD is, therefore, suitable to reliably achieve and maintain fracture reductions, and to, consequently, allow external fracture fixation

    Could humans recognize odor by phonon assisted tunneling?

    Get PDF
    Our sense of smell relies on sensitive, selective atomic-scale processes that are initiated when a scent molecule meets specific receptors in the nose. However, the physical mechanisms of detection are not clear. While odorant shape and size are important, experiment indicates these are insufficient. One novel proposal suggests inelastic electron tunneling from a donor to an acceptor mediated by the odorant actuates a receptor, and provides critical discrimination. We test the physical viability of this mechanism using a simple but general model. Using values of key parameters in line with those for other biomolecular systems, we find the proposed mechanism is consistent both with the underlying physics and with observed features of smell, provided the receptor has certain general properties. This mechanism suggests a distinct paradigm for selective molecular interactions at receptors (the swipe card model): recognition and actuation involve size and shape, but also exploit other processes.Comment: 10 pages, 1 figur

    Flexible silicon-based alpha-particle detector

    Get PDF
    The detection of alpha particles in the field can be challenging due to their short range in air of often only a few centimeters or less. This short range is a particular issue for measuring radiation inside contaminated pipework in the nuclear industry, for which there is currently no simple method available without cutting the pipes open. Here, we propose an approach for low cost, rapid, and safe identification of internally contaminated pipework based on a flexible 30 × 10 mm2 sheet of 50 μm thin crystalline silicon. Following established fabrication steps of pn-junction diodes, we have constructed a device with a signal-to-noise ratio of >20 in response to 5.5 MeV alpha-particles using a bespoke amplifier circuit. As flexible detectors may readily conform to a curved surface and are able to adapt to the curvature of a given pipeline, our prototype device stands out as a viable solution for nuclear decommissioning and related applications

    Reactive atomistic simulations of Diels-Alder reactions: The importance of molecular rotations

    Get PDF
    The Diels-Alder reaction between 2,3-dibromo-1,3-butadiene and maleic anhydride has been studied by means of multisurface adiabatic reactive molecular dynamics and the PhysNet neural network architecture. This system is used as a prototype to explore the concertedness, synchronicity, and possible ways of promotion of Diels-Alder reactions. Analysis of the minimum dynamic path indicates that rotational energy is crucial (similar to 65%) to drive the system toward the transition state in addition to collision energy (similar to 20%). Comparison with the reaction of butadiene and maleic anhydride shows that the presence of bromine substituents in the diene accentuates the importance of rotational excitation to promote the reaction. At the high total energies at which reactive events are recorded, the reaction is found to be direct and mostly synchronous

    Strategies and limits in multi-stage single-point incremental forming

    Get PDF
    Abstract: Multi-stage single-point incremental forming (SPIF) is a state-of-the-art manufac-turing process that allows small-quantity production of complex sheet metal parts with vertical walls. This paper is focused on the application of multi-stage SPIF with the objective of producing cylindrical cups with vertical walls. The strategy consists of forming a conical cup with a taper angle in the first stage, followed by three subsequent stages that progressively move the conical shape towards the desired cylindrical geometry. The investigation includes material characterization, determination of forming-limit curves and fracture forming-limit curves (FFLCs), numerical simulation, and experimentation, namely the evaluation of strain paths and fracture strains in actual multi-stage parts. Assessment of numerical simulation with experimentation shows good agreement between computed and measured strain and strain paths. The results also reveal that the sequence of multi-stage forming has a large effect on the location of strain points in the principal strain space. Strain paths are linear in the first stage and highly non-linear in the subsequent forming stages. The overall results show that the experimentally determined FFLCs can successfully be employed to establish the forming limits of multi-stage SPIF

    Observation and Spectral Measurements of the Crab Nebula with Milagro

    Full text link
    The Crab Nebula was detected with the Milagro experiment at a statistical significance of 17 standard deviations over the lifetime of the experiment. The experiment was sensitive to approximately 100 GeV - 100 TeV gamma ray air showers by observing the particle footprint reaching the ground. The fraction of detectors recording signals from photons at the ground is a suitable proxy for the energy of the primary particle and has been used to measure the photon energy spectrum of the Crab Nebula between ~1 and ~100 TeV. The TeV emission is believed to be caused by inverse-Compton up-scattering scattering of ambient photons by an energetic electron population. The location of a TeV steepening or cutoff in the energy spectrum reveals important details about the underlying electron population. We describe the experiment and the technique for distinguishing gamma-ray events from the much more-abundant hadronic events. We describe the calculation of the significance of the excess from the Crab and how the energy spectrum is fit. The fit is consistent with values measured by IACTs between 1 and 20 TeV. Fixing the spectral index to values that have been measured below 1 TeV by IACT experiments (2.4 to 2.6), the fit to the Milagro data suggests that Crab exhibits a spectral steepening or cutoff between about 20 to 40 TeV.Comment: Submitted to Astrophysical Journa
    • …
    corecore