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The detection of alpha particles in the field can be challenging due to their short range in air of 

often only a few centimeters or less. This short range is a particular issue for measuring radiation 

inside contaminated pipework in the nuclear industry, for which there is currently no simple 

method available without cutting the pipes open. Here, we propose a novel approach based on a 

flexible 30 x 10 mm2 sheet of 50 µm thin crystalline silicon. Following established fabrication 

steps of pn-junction diodes, we have successfully constructed a device with a signal-to-noise of 

>20 in response to 5.5 MeV alpha-particles using a bespoke amplifier circuit. As flexible detectors 

may readily conform to a curved surface and are able to adapt to the curvature of a given pipeline, 

our prototype device stands out as a viable solution for nuclear decommissioning and related 

applications. 
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The decommissioning of nuclear sites requires reliable techniques for the detection, identification 

and quantification of radioactive substances. Discriminating between disposable and contaminated 

waste has a significant impact on the cost of decommissioning. The UK government has already 

forecast the enormous cost of at least £117 billion for decommissioning UK nuclear sites over the 

next century,1 with other nuclear nations facing similar issues. New technologies and solutions 

therefore need to be explored in order to reduce the cost and to speed up the decommissioning 

progress. 

In particular, there is no simple, low-cost solution available for assessing the presence of 

radioactive sources that are essentially alpha-only emitters, such as plutonium 239Pu, on the inner 

walls of pipework. The range of alpha-particles in media is intrinsically short and as such, alpha-

emitters are undetectable from the outside, as any radiation occurring on the inside of the pipe is 

absorbed by the wall. The emitting isotope may even be embedded in tiny cracks in the pipe wall 

meaning that alpha-particles may lose energy as they emerge. Consequently, alpha-particle 

detectors need to be positioned as closely as possible to the inner walls in order to achieve the 

greatest detection efficiency and be able to detect very low radiation doses. 

For the detection of alpha-particles, one can either collect the generated free charge carriers 

(formed directly by ionization of atoms or molecules) as an electrical pulse or convert the 

scintillation photons (due to recombination of free charge carrier pairs) into an electronic signal.2 

One commercialized technique is the Ionsens® pipe monitor3 which is based on the 

measurement of air-driving ions: if ambient air is struck by alpha-particles, the ionized air 

molecules can be driven to an ionization chamber via a fan. Collecting the ionized molecules and 

modelling the airspeed distribution inside the pipe allows one to determine the drifted distance 

from the source to the chamber, and so to locate the alpha-radiation.4 However, as this method 
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requires a testing chamber for inspection, each pipe must be cut into segments – which is 

incompatible with the inspection of extended pipework. 

Other commercial methods, such as the Alpha ExplorerTM and Pipe Crawler®,5-7 are based on 

the scintillator detector ZnS(Ag) which is most extensively used in nuclear facilities and the like:8 

when struck by an alpha-particle, the scintillator absorbs its energy and re-emits the absorbed 

energy as photons, revealing the presence of alpha-emitting isotopes. However, these methods 

would have a low detection efficiency of 1%,7 a low energy resolution and may be sensitive to 

other ionizing radiation in the environment as well as local alpha radiation. 

Here, we suggest a novel detector system based on flexible crystalline silicon that can conform 

to the inner diameter of pipework for the direct detection of alpha-particles.9 Our solution not only 

offers the potential for 360-degree inner diameter coverage, but it can also be adapted to pipes of 

different diameter. By being as close as possible to the inner pipe walls, maximum sensitivity and 

uniform efficiency can be achieved, even for low energy alpha-particles, where other approaches 

may struggle. As a proof-of-principle, we demonstrate that a sheet of flexible crystalline silicon of 

50 µm thickness, as shown in Fig. 1, forms the basis for a high-performance in-pipe alpha-particle 

detector. Our sensor can be more generally adapted to any curved surface, such as the exterior of 

barrels filled with radioactive waste. It can also address the requirements of some nuclear and 

particle physics experiments that require non-planar detectors. 
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FIG. 1. Crystalline silicon wafers become flexible at ca. 70 µm thickness. Accordingly, they can be bent to 

be used for screening the inner surface of a 2” diameter pipe for alpha-contamination and can be mounted 

on an elastic inspection gauge. 

For nuclear radiation detectors, high-purity float zone wafers are particularly suitable because 

of their high resistivity and low defect density.2 However, we opted for Czochralski-grown wafers, 

because of their inherently high oxygen content. Oxygen not only strengthens the material 

(reducing wafer breakage during fabrication), but is also helps withstand the effects of radiation 

damage by alpha-particles.2 In addition, Czochralski wafers are lower cost than float-zone wafers. 

We then introduce phosphorus doping by thermal diffusion using a solid planar diffusion source 

(PH-1025, Saint-Gobain). Phosphorus and p-type wafers were chosen, because boron as dopant 

source for n-type wafers would have required additional processing steps for the removal of the 

borosilicate glass layer (also referred to as boron skin), and hence would have increased the risk 

factors for wafer breakages during processing. The source wafer is placed immediately adjacent 

and parallel to the 3” p-type silicon wafers and the doping step is carried out at 1025 °C in an N2 

atmosphere for 60 minutes. After unloading, the excess glass which forms during the doping 

process is removed from the silicon wafers by HF processing. This is followed by the deposition 

of a 200 nm thick aluminum layer on both sides of the wafer (MANTIS HEX® thermal evaporation 
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system). The coating serves both as an electrical contact and as an optical blocking filter to remove 

daylight sensitivity of the produced detector. Using Monte-Carlo type simulations (GEANT4®, 

Fig. 2),10 we have determined that the energy loss of alpha-particles is negligible for this thickness 

of aluminum, which in turn completely blocks optical photons, thereby minimizing background 

noise. 

The fabrication process requires additional steps to improve the detector’s performance. These 

include thermally growing, a 500 nm thick layer of sacrificial oxide on the wafers before starting 

the doping process, in order to remove damaged surface regions and contamination.11 The thermal 

oxide is also used as a doping barrier on the back side of the wafer in order to ensure that only a 

single pn-junction is formed. A film of organic lacquer (Lacomite® varnish) was used to protect 

the oxide when opening the window for doping. Lacomite® is a cheap, air-drying and acetone-

soluble resin. Finally, RCA cleans were performed prior to each high-temperature processing step. 

   

FIG. 2. GEANT4 model for a Si detector in an alpha-contaminated steel pipe (left hand side).10 Alpha-

particle tracks in air are indicated as green dashed lines. The model was created to understand the effect of 

Si contact material and thickness as well as the effect on detection efficiency from air gap between detector 

and 239Pu. If the aluminum on the top face of the detector is less than 1 µm thick, it does not significantly 

affect the detection efficiency, because the energy loss of alpha-particles remains negligible, as shown in 

the graph on the right. While 50% of alpha-particles are absorbed by the pipe wall, 10% will miss or reach 

the detector at a grazing angle, such that only 40% of alpha-particles remain detectable at best. 
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Alpha-particles from 239Pu have a typical kinetic energy of 5.1 MeV, corresponding to a Bragg 

peak around 22 µm deep in silicon.12 Therefore, the vast majority of free charge carriers will be 

created within the first 20 µm by the ionization of the silicon atoms and so the 50 µm thickness of 

the wafer is sufficient to fully absorb even the highest energy alpha-particles. At the same time, 

the low wafer thickness and low background doping (8 x 1014 cm-3) ensures that the generated 

electron-hole pairs can easily diffuse to the depletion layer and generate a current before 

recombining.13 Hence, while the 50 µm thickness was initially chosen for its mechanical 

flexibility, it is also favorable for alpha-detector operation. 

We determined a pn-junction depth of ca. 2.5 µm via a thickness measurement of the 

phosphosilicate glass on the doped wafers. The junction depth is then read-off from the datasheet 

of the planar diffusion source (PH-1025, Saint Gobain). Here, a glass layer of 100 nm was found 

using a bespoke ellipsometer.  

Since the doping concentrations largely differ from each other, the depletion region of the pn-

junction extends predominantly into the low doped side and can thus be determined by the 

resistivity ρ of the substrate wafers. Here, using a four-point probe measurement we found a sheet 

resistance of 4 kΩ/□ and hence a resistivity of 4 kΩ × 50 µm = 20 Ωcm. Assuming a built-in 

voltage of Vb ≈ 0.5 V and a typical hole mobility of 400 cm2/Vs in Si, with the dielectric constant 

ε ≈ 1 pF/cm, the depletion width w becomes2  

𝑤 = √2𝜀𝜇𝜌𝑉𝑏 ≈ √2 pF cm-1×4 000 cm3 F−1 ≈ 0.9 μm. (1) 

On the other hand, the depletion layer thickness can also be estimated from the measured 

capacitance of 10 nF/cm2,  

𝑤 = 𝜀 𝐴𝐶 ≈ 1 pF/cm × 1 cm210 000 pF = 1 μm, (2) 
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which agrees well with the above calculation. 

Multiple 30 x 10 mm2 samples were then cleaved from flexible silicon wafers with different 

background doping levels (as discussed in the following) and mounted onto a 2” pipeline 

inspection gauge. The current-voltage characteristics of the mounted devices confirm the excellent 

pn-junction characteristics as shown in Fig. 3. 

 

FIG. 3. The electrical current density I (in mA/cm2) as a function of the applied voltage (in V) is shown on 

a log-scale (left figure) for samples of 3 cm2 in size, which were mounted onto a 2” pipeline inspection 

gauge consisting of two modules (right figure); the compliance limit was set to 100 mA. Here, the dotted 

and solid curve represent detectors fabricated using a 20 and 1 000 Ωcm resistive substrate, respectively. 

The dark currents range from less than 1 nA/cm2 at 0 V to a few µA/cm2 at 5 V. The flat reverse current 

along with the sharp onset at 0.5 V forward bias indicates the high-quality of the pn-junctions. We anticipate 

from our GEANT4 simulations that four modules can cover 20 m length of pipe in ca. 60 min, with a 

minimum detectable activity of 0.4 Bq/cm2. 
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The initial alpha-particle detection experiments were conducted with the 20 Ωcm material. 

Given the relatively large detector size and typical capacitance of almost 30 nF, matching an 

amplifier to the large capacitance of the device was essential. Nevertheless, by using a bespoke 

charge sensitive amplifier – made from off the shelf electronic components (to reduce overall 

costs) – 5.5 MeV alpha-emission of a 241Am source (40 kBq) from 3 mm distance was detected 

with a signal-to-noise ratio of 4; the distance was chosen for mechanical and operational reasons 

such as roughness and welding joints. The signal-to-noise ratio generally increases with decreasing 

capacitance, it is important to keep the capacitance low. To this end, we introduced higher 

resistivity (1 000 Ωcm) silicon material. Based on Poisson’s equation, the depletion width of a pn-

junction scales with the square root of the resistivity (see Eq. 1), so increasing the resistivity of the 

wafer should increase the depletion width and decrease the capacitance of the device (see Eq. 2). 

Fig. 4 demonstrates this benefit experimentally. The measured device capacitance has dropped 

from almost 10 nF/cm2 to 2 nF/cm2. We also obtained an improvement of the signal-to-noise ratio 

from 4 to more than 20, as shown in the inset of Fig. 4.  

Finally, since beta and gamma particles could influence the detection of alpha radiation, we 

also simulated the response to beta and gamma rays at various energies. While the gamma signal 

generally scales with the silicon layer thickness or junction depletion width, we found that a 50 

µm thin and flexible silicon detector is very inefficient for such type of rays when operated without 

bias (photovoltaic mode); given it is so then it is ideal to be used in a high background environment. 

In fact, we could not observe any gamma signal, when we tested our detector to a high gamma 

source, such as 60Co, which is a common activation product in aged nuclear waste. 
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FIG. 4. The spectral response of a 30 x 10 mm2 un-biased, flexible silicon detector (in photovoltaic 

operation and mounted onto a 2” pipeline inspection gauge) to 5.5 MeV alpha-particles of a 241Am source 

with 40 kBq activity, using a bespoke charge sensitive amplifier circuit, a low-level discriminator (to reject 

pulses below 0.7 MeV) and an integration time of 10 min. No shifts in the peak position where observed 

over a three-week period, highlighting excellent repeatability and stability of the sensor system with a 

FWHM energy resolution of less than 5%. The signal peaks at 640 mV, compared to a noise floor of 30 

mV, resulting in a signal-to-noise ratio of more than 20 (see inset). The devices were left unbiased for 

simplicity of design and cost reduction in the amplifier circuit 

Overall, we have demonstrated the use of flexible silicon as a platform for radioactive particle 

detection. While flexible silicon has already found its way into photonics applications, e.g. solar 

cells,14 it has not yet been used for applications in the nuclear industry, or for other scopes.  

Flexible silicon could also be used for the efficient detection of thermal neutrons. Since the 

interaction of thermal neutrons with boron (10B) leads to the emission of alpha-particles, a 2 µm 

thin layer of 10B enriched oxide may act as the intrinsic region between two flexible silicon sheets 

of different doping types.15 In principle, as such flexible pin-devices have a high thermal neutron 



10 

 

efficiency, their applications could include the detection of thermal neutrons in different industrial 

scenarios. 

Furthermore, in some nuclear and particle physics experiments, angle-resolved information 

needs to be collected. For example, a large-area, flexible, silicon detector could become the 

preferential alternative for setups, where the required cylindrical geometry has been approximated 

by a hexagonal cross-section.16 Two-dimensional position sensing could be achieved by 

subdividing the outer electrode into pixels. We will focus on the potentials of a flexible sheet of 

silicon for nuclear and particle physics experiments in a future paper. 

In summary, we have introduced and demonstrated a high-performance and low-cost solution 

for a novel alpha-particle detector based on flexible crystalline silicon, demonstrating that flexible 

silicon technology may have an interesting role to play in the field of nuclear decommissioning 

and related applications. 
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