85 research outputs found

    A Local Ecosystem Assessment of the Potential for Net Negative Heavy-Duty Truck Greenhouse Gas Emissions through Biomethane Upcycling

    Get PDF
    Decarbonising heavy-duty trucks is challenging due to high journey power and energy requirements. With a growing fleet of commercial vehicles in the UK, biomethane can provide significant reductions in greenhouse gas (GHG) emissions compared to fossil diesel. Methane is a potent GHG with a global warming potential (GWP) of 23–36, therefore reducing levels in the atmosphere can have a significant impact on climate change. There are a range of anthropogenic sources of methane that could be collected and processed to provide sustainable energy (upcycled), e.g., agricultural waste and the waste water system. This paper explores the impact of using upcycled methane in transport in South East England, evaluating local sources of anthropogenic methane and the environmental and economic impact of its use for a heavy-duty truck compared to fossil and battery electric alternatives. Analysis concludes that the use of upcycled methane in transport can provide significant reductions in lifecycle GHG emissions compared to diesel, fossil natural gas or battery electric trucks, and give net negative GHG emissions where avoided environmental methane emissions are considered. Furthermore, upcycling solutions can offer a lower cost route to GHG reduction compared to electrification

    Supervision of research students: three papers

    No full text
    The three papers were presented at a workshop for thesis supervisors on Supervising Research Students. Held on 13 March 1996 the workshop was organised jointly by the Centre for Educational Development and Academic Methods and the Graduate School. Papers: 1. Prof. Hank Nelson: A short thesis on supervision. 2. Prof P.J. Gullan: Supervision of Research Students in Biological Sciences. 3. David Atkins: Supervision: A Student Perspective

    The impact of disruptive powertrain technologies on energy consumption and carbon dioxide emissions from heavy-duty vehicles

    Get PDF
    Minimising tailpipe emissions and the decarbonisation of transport in a cost effective way remains a major objective for policymakers and vehicle manufacturers. Current trends are rapidly evolving but appear to be moving towards solutions in which vehicles which are increasingly electrified. As a result we will see a greater linkage between the wider energy system and the transportation sector resulting in a more complex and mutual dependency. At the same time, major investments into technological innovation across both sectors are yielding rapid advancements into on-board energy storage and more compact/lightweight on-board electricity generators. In the absence of sufficient technical data on such technology, holistic evaluations of the future transportation sector and its energy sources have not considered the impact of a new generation of innovation in propulsion technologies. In this paper, the potential impact of a number of novel powertrain technologies are evaluated and presented. The analysis considers heavy duty vehicles with conventional reciprocating engines powered by diesel and hydrogen, hybrid and battery electric vehicles and vehicles powered by hydrogen fuel cells, and free-piston engine generators (FPEGs). The benefits are compared for each technology to meet the expectations of representative medium and heavy-duty vehicle drivers. Analysis is presented in terms of vehicle type, vehicle duty cycle, fuel economy, greenhouse gas (GHG) emissions, impact on the vehicle etc.. The work shows that the underpinning energy vector and its primary energy source are the most significant factor for reducing primary energy consumption and net CO2 emissions. Indeed, while an HGV with a BEV powertrain offers no direct tailpipe emissions, it produces significantly worse lifecycle CO2 emissions than a conventional diesel powertrain. Even with a de-carbonised electricity system (100g CO2/kWh), CO2 emissions are similar to a conventional Diesel fuelled HGV. For the HGV sector, range is key to operator acceptability of new powertrain technologies. This analysis has shown that cumulative benefits of improved electrical powertrains, on-board storage, efficiency improvements and vehicle design in 2025 and 2035 mean that hydrogen and electric fuelled vehicles can be competitive on gravimetric and volumetric density. Overall, the work demonstrates that presently there is no common powertrain solution appropriate for all vehicle types but how subtle improvements at a vehicle component level can have significant impact on the design choices for the wider energy system

    Decarbonising Road Freight

    Get PDF

    A Combined Geometric Morphometric and Discrete Element Modeling Approach for Hip Cartilage Contact Mechanics.

    Get PDF
    Finite element analysis (FEA) provides the current reference standard for numerical simulation of hip cartilage contact mechanics. Unfortunately, the development of subject-specific FEA models is a laborious process. Owed to its simplicity, Discrete Element Analysis (DEA) provides an attractive alternative to FEA. Advancements in computational morphometrics, specifically statistical shape modeling (SSM), provide the opportunity to predict cartilage anatomy without image segmentation, which could be integrated with DEA to provide an efficient platform to predict cartilage contact stresses in large populations. The objective of this study was, first, to validate linear and non-linear DEA against a previously validated FEA model and, second, to present and evaluate the applicability of a novel population-averaged cartilage geometry prediction method against previously used methods to estimate cartilage anatomy. The population-averaged method is based on average cartilage thickness maps and therefore allows for a more accurate and individualized cartilage geometry estimation when combined with SSM. The root mean squared error of the population-averaged cartilage geometry predicted by SSM as compared to the manually segmented cartilage geometry was 0.31 ± 0.08 mm. Identical boundary and loading conditions were applied to the DEA and FEA models. Predicted DEA stress distribution patterns and magnitude of peak stresses were in better agreement with FEA for the novel cartilage anatomy prediction method as compared to commonly used parametric methods based on the estimation of acetabular and femoral head radius. Still, contact stress was overestimated and contact area was underestimated for all cartilage anatomy prediction methods. Linear and non-linear DEA methods differed mainly in peak stress results with the non-linear definition being more sensitive to detection of high peak stresses. In conclusion, DEA in combination with the novel population-averaged cartilage anatomy prediction method provided accurate predictions while offering an efficient platform to conduct population-wide analyses of hip contact mechanics

    Clinical observation of diminished bone quality and quantity through longitudinal HR-pQCT-derived remodeling and mechanoregulation.

    Get PDF
    High resolution peripheral quantitative computed tomography (HR-pQCT) provides methods for quantifying volumetric bone mineral density and microarchitecture necessary for early diagnosis of bone disease. When combined with a longitudinal imaging protocol and finite element analysis, HR-pQCT can be used to assess bone formation and resorption (i.e., remodeling) and the relationship between this remodeling and mechanical loading (i.e., mechanoregulation) at the tissue level. Herein, 25 patients with a contralateral distal radius fracture were imaged with HR-pQCT at baseline and 9-12 months follow-up: 16 patients were prescribed vitamin D3 with/without calcium supplement based on a blood biomarker measures of bone metabolism and dual-energy X-ray absorptiometry image-based measures of normative bone quantity which indicated diminishing (n = 9) or poor (n = 7) bone quantity and 9 were not. To evaluate the sensitivity of this imaging protocol to microstructural changes, HR-pQCT images were registered for quantification of bone remodeling and image-based micro-finite element analysis was then used to predict local bone strains and derive rules for mechanoregulation. Remodeling volume fractions were predicted by both average values of trabecular and cortical thickness and bone mineral density (R2 > 0.8), whereas mechanoregulation was affected by dominance of the arm and group classification (p < 0.05). Overall, longitudinal, extended HR-pQCT analysis enabled the identification of changes in bone quantity and quality too subtle for traditional measures
    • …
    corecore