270 research outputs found

    Fast computation of the dyadic green's function for layered media via interpolation

    Get PDF
    The use of a dyadic layered-medium Green's function as the kernel in a method of moments (MoM) modeling problem greatly reduces the complexity of modeling a stratified medium. Compared to the free-space Green's function, there is an additional cost of having to compute a semi-infinite Sommerfeld integral for each call to calculate the dyadic layered-medium Green's function. This letter discusses a method to tabulate and interpolate the Green's function as a method of reducing the impedance matrix filling time. This method can be used in conjunction with existing methods for increasing the computational speed of the Green's functions. © 2010 IEEE.published_or_final_versio

    Inferring the most probable maps of underground utilities using Bayesian mapping model

    Get PDF
    Mapping the Underworld (MTU), a major initiative in the UK, is focused on addressing social, environmental and economic consequences raised from the inability to locate buried underground utilities (such as pipes and cables) by developing a multi-sensor mobile device. The aim of MTU device is to locate different types of buried assets in real time with the use of automated data processing techniques and statutory records. The statutory records, even though typically being inaccurate and incomplete, provide useful prior information on what is buried under the ground and where. However, the integration of information from multiple sensors (raw data) with these qualitative maps and their visualization is challenging and requires the implementation of robust machine learning/data fusion approaches. An approach for automated creation of revised maps was developed as a Bayesian Mapping model in this paper by integrating the knowledge extracted from sensors raw data and available statutory records. The combination of statutory records with the hypotheses from sensors was for initial estimation of what might be found underground and roughly where. The maps were (re)constructed using automated image segmentation techniques for hypotheses extraction and Bayesian classification techniques for segment-manhole connections. The model consisting of image segmentation algorithm and various Bayesian classification techniques (segment recognition and expectation maximization (EM) algorithm) provided robust performance on various simulated as well as real sites in terms of predicting linear/non-linear segments and constructing refined 2D/3D maps

    Suppressing Electroweak Precision Observables in 5D Warped Models

    Full text link
    We elaborate on a recently proposed mechanism to suppress large contributions to the electroweak precision observables in five dimensional (5D) warped models, without the need for an extended 5D gauge sector. The main ingredient is a modification of the AdS metric in the vicinity of the infrared (IR) brane corresponding to a strong deviation from conformality in the IR of the 4D holographic dual. We compute the general low energy effective theory of the 5D warped Standard Model, emphasizing additional IR contributions to the wave function renormalization of the light Higgs mode. We also derive expressions for the S and T parameters as a function of a generic 5D metric and zero-mode wave functions. We give an approximate formula for the mass of the radion that works even for strong deviation from the AdS background. We proceed to work out the details of an explicit model and derive bounds for the first KK masses of the various bulk fields. The radion is the lightest new particle although its mass is already at about 1/3 of the mass of the lightest resonances, the KK states of the gauge bosons. We examine carefully various issues that can arise for extreme choices of parameters such as the possible reintroduction of the hierarchy problem, the onset of nonperturbative physics due to strong IR curvature or the creation of new hierarchies near the Planck scale. We conclude that a KK scale of 1 TeV is compatible with all these constraints.Comment: 44 pages, 11 figures, references adde

    Prevalence of myocardial hypertrophy in a population of asymptomatic Swedish Maine coon cats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maine coon cats have a familial disposition for developing hypertrophic cardiomyopathy (HCM) with evidence of an autosomal dominant mode of inheritance <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. The current mode to diagnose HCM is by use of echocardiography. However, definite reference criteria have not been established. The objective of the study was to determine the prevalence of echocardigraphic changes consistent with hypertrophic cardiomyopathy in Swedish Maine coon cats, and to compare echocardiographic measurements with previously published reference values.</p> <p>Methods</p> <p>All cats over the age of 8 months owned by breeders living in Stockholm, listed on the website of the Maine Coon breeders in Sweden by February 2001, were invited to participate in the study. Physical examination and M-mode and 2D echocardiographic examinations were performed in all cats.</p> <p>Results</p> <p>Examinations of 42 asymptomatic Maine coon cats (10 males and 32 females) were performed. The age of the cats ranged from 0,7 to 9,3 years with a mean of 4,8 ± 2,3 years. Four cats (9,5%) had a diastolic interventricular septal (IVSd) or left ventricular free wall (LVPWd) thickness exceeding 6,0 mm. In 3 of these cats the hypertrophy was segmental. Two cats (4,8%) had systolic anterior motion (SAM) of the mitral valve without concomitant hypertrophy. Five cats (11,9%) had IVSd or LVPWd exceeding 5,0 mm but less than 6,0 mm.</p> <p>Conclusion</p> <p>Depending on the reference values used, the prevalence of HCM in this study varied from 9,5% to 26,2%. Our study suggests that the left ventricular wall thickness of a normal cat is 5,0 mm or less, rather than 6,0 mm, previously used by most cardiologists. Appropriate echocardiographic reference values for Maine coon cats, and diagnostic criteria for HCM need to be further investigated.</p

    The Effective Lagrangian for Bulk Fermions in Models with Extra Dimensions

    Full text link
    We compute the dimension 6 effective Lagrangian arising from the tree level integration of an arbitrary number of bulk fermions in models with warped extra dimensions. The coefficients of the effective operators are written in terms of simple integrals of the metric and are valid for arbitrary warp factors, with or without an infrared brane, and for a general Higgs profile. All relevant tree level fermion effects in electroweak and flavor observables can be computed using this effective Lagrangian.Comment: 22 pages. V2: typos corrected, matches published versio

    Reducing Constraints in a Higher Dimensional Extension of the Randall and Sundrum Model

    Get PDF
    In order to investigate the phenomenological implications of warped spaces in more than five dimensions, we consider a 4+1+δ4+1+\delta dimensional extension to the Randall and Sundrum model in which the space is warped with respect to a single direction by the presence of an anisotropic bulk cosmological constant. The Einstein equations are solved, giving rise to a range of possible spaces in which the δ\delta additional spaces are warped. Here we consider models in which the gauge fields are free to propagate into such spaces. After carrying out the Kaluza Klein (KK) decomposition of such fields it is found that the KK mass spectrum changes significantly depending on how the δ\delta additional dimensions are warped. We proceed to compute the lower bound on the KK mass scale from electroweak observables for models with a bulk SU(2)×U(1)SU(2)\times U(1) gauge symmetry and models with a bulk SU(2)R×SU(2)L×U(1)SU(2)_R\times SU(2)_L\times U(1) gauge symmetry. It is found that in both cases the most favourable bounds are approximately MKK2M_{KK}\gtrsim 2 TeV, corresponding to a mass of the first gauge boson excitation of about 4-6 TeV. Hence additional warped dimensions offer a new way of reducing the constraints on the KK scale.Comment: 27 pages, 15 figures, v3: Additional comments in sections 1, 2 and 4. New appendix added. Five additional figures. References adde

    Site-directed M2 proton channel inhibitors enable synergistic combination therapy for rimantadine-resistant pandemic influenza

    Get PDF
    Pandemic influenza A virus (IAV) remains a significant threat to global health. Preparedness relies primarily upon a single class of neuraminidase (NA) targeted antivirals, against which resistance is steadily growing. The M2 proton channel is an alternative clinically proven antiviral target, yet a near-ubiquitous S31N polymorphism in M2 evokes resistance to licensed adamantane drugs. Hence, inhibitors capable of targeting N31 containing M2 (M2-N31) are highly desirable. Rational in silico design and in vitro screens delineated compounds favouring either lumenal or peripheral M2 binding, yielding effective M2-N31 inhibitors in both cases. Hits included adamantanes as well as novel compounds, with some showing low micromolar potency versus pandemic “swine” H1N1 influenza (Eng195) in culture. Interestingly, a published adamantane-based M2-N31 inhibitor rapidly selected a resistant V27A polymorphism (M2-A27/N31), whereas this was not the case for non-adamantane compounds. Nevertheless, combinations of adamantanes and novel compounds achieved synergistic antiviral effects, and the latter synergised with the neuraminidase inhibitor (NAi), Zanamivir. Thus, site-directed drug combinations show potential to rejuvenate M2 as an antiviral target whilst reducing the risk of drug resistance

    Explaining the Atypical Reaction Profiles of Heme Enzymes with a Novel Mechanistic Hypothesis and Kinetic Treatment

    Get PDF
    Many heme enzymes show remarkable versatility and atypical kinetics. The fungal extracellular enzyme chloroperoxidase (CPO) characterizes a variety of one and two electron redox reactions in the presence of hydroperoxides. A structural counterpart, found in mammalian microsomal cytochrome P450 (CYP), uses molecular oxygen plus NADPH for the oxidative metabolism (predominantly hydroxylation) of substrate in conjunction with a redox partner enzyme, cytochrome P450 reductase. In this study, we employ the two above-mentioned heme-thiolate proteins to probe the reaction kinetics and mechanism of heme enzymes. Hitherto, a substrate inhibition model based upon non-productive binding of substrate (two-site model) was used to account for the inhibition of reaction at higher substrate concentrations for the CYP reaction systems. Herein, the observation of substrate inhibition is shown for both peroxide and final substrate in CPO catalyzed peroxidations. Further, analogy is drawn in the “steady state kinetics” of CPO and CYP reaction systems. New experimental observations and analyses indicate that a scheme of competing reactions (involving primary product with enzyme or other reaction components/intermediates) is relevant in such complex reaction mixtures. The presence of non-selective reactive intermediate(s) affords alternate reaction routes at various substrate/product concentrations, thereby leading to a lowered detectable concentration of “the product of interest” in the reaction milieu. Occam's razor favors the new hypothesis. With the new hypothesis as foundation, a new biphasic treatment to analyze the kinetics is put forth. We also introduce a key concept of “substrate concentration at maximum observed rate”. The new treatment affords a more acceptable fit for observable experimental kinetic data of heme redox enzymes

    Reactions to treatment debriefing among the participants of a placebo controlled trial

    Get PDF
    BACKGROUND: A significant proportion of trial participants respond to placebos for a variety of conditions. Despite the common conduct of these trials and the strong emphasis placed on informed consent, very little is known about informing participants about their individual treatment allocation at trial closure. This study aims to address this gap in the literature by exploring treatment beliefs and reactions to feedback about treatment allocation in the participants of a placebo-controlled randomized clinical trial (RCT). METHODS: Survey of trial participants using a semi-structured questionnaire including close and open-ended questions administered as telephone interviews and postal questionnaires. Trial participants were enrolled in a double-blind placebo-controlled RCT evaluating the effectiveness of corticosteroid for heel pain (ISRCTN36539116). The trial had closed and participants remained blind to treatment allocation. We assessed treatment expectations, the percentage of participants who wanted to be informed about their treatment allocation, their ability to guess and reactions to debriefing. RESULTS: Forty-six (73%) contactable participants responded to our survey. Forty-two were eligible (four participants with bilateral disease were excluded as they had received both treatments). Most (79%) participants did not have any expectations prior to receiving treatment, but many 'hoped' that something would help. Reasons for not having high expectations included the experimental nature of their care and possibility that they may get a placebo. Participants were hopeful because their pain was so severe and because they trusted the staff and services. Most (83%) wanted to be informed about their treatment allocation and study results. Over half (55%) said they could not guess which treatment they had been randomized to, and many of those who attempted a guess were incorrect. Reactions to treatment debriefing were generally positive, including in placebo responders. CONCLUSION: Our study suggests that most trial participants want to be informed about their treatment allocation and trial results. Further research is required to develop measure of hope and expectancy and to rigorously evaluate the effects of debriefing prospectively
    corecore