28 research outputs found

    Effects of fluoroquinolones and tetracyclines on mitochondria of human retinal MIO-M1 cells

    Get PDF
    Our goal was to explore the detrimental impacts of ciprofloxacin (CPFX) and tetracycline (TETRA) on human retinal Müller (MIO-M1) cells in vitro. Cells were exposed to 30, 60 and 120 μg/ml of CPFX and TETRA. The cellular metabolism was measured with the MTT assay. The JC-1 and CM-H2DCFDA assays were used to evaluate the levels of mitochondrial membrane potential (MMP) and ROS (reactive oxygen species), respectively. Mitochondrial DNA (mtDNA) copy number, along with gene expression levels associated with apoptotic (BAX, BCL2-L13, BCL2, CASP-3 and CASP-9), inflammatory (IL-6, IL-1β, TGF-α, TGF-β1 and TGF-β2) and antioxidant pathways (SOD2, SOD3, GPX3 and NOX4) were analyzed via Quantitative Real-Time PCR (qRT-PCR). Bioenergetic profiles were measured using the Seahorse® XF Flux Analyzer. Cells exposed 24 h to 120 μg/ml TETRA demonstrated higher cellular metabolism compared to vehicle-treated cells. At each time points, (i) all TETRA concentrations reduced MMP levels and (ii) ROS levels were reduced by TETRA 120 μg/ml treatment. TETRA caused (i) higher expression of CASP-3, CASP-9, TGF-α, IL-1B, GPX3 and SOD3 but (ii) decreased levels of TGF-B2 and SOD2. ATP production and spare respiratory capacity declined with TETRA treatment. Cellular metabolism was reduced with CPFX 120 μg/ml in all cultures and 60 μg/ml after 72 h. The CPFX 120 μg/ml reduced MMP in all cultures and ROS levels (72 h). CPFX treatment (i) increased expression of CASP-3, CASP-9, and BCL2-L13, (ii) elevated the basal oxygen consumption rate, and (iii) lowered the mtDNA copy numbers and expression levels of TGF-B2, IL-6 and IL-1B compared to vehicle-control cells. We conclude that clinically relevant dosages of bactericidal and bacteriostatic antibiotics can have negative effects on the cellular metabolism and mitochondrial membrane potential of the retinal MIO-M1 cells in vitro. It is noteworthy to mention that apoptotic and inflammatory pathways in exposed cells were affected significantly This is the first study showing the negative impact of fluoroquinolones and tetracyclines on mitochondrial behavior of human retinal MIO-M1 cells

    Protective Effects of Memantine on Hydroquinone-Treated Human Retinal Pigment Epithelium Cells and Human Retinal Muller Cells

    Get PDF
    Purpose: Memantine (MEM) acts on the glutamatergic system by blocking N-methyl-d-aspartate (NMDA) glutamate receptors. The role that MEM plays in protecting retinal cells is unknown. Hydroquinone (HQ) is one of the cytotoxic components in cigarette smoke. In the present study, we tested whether pretreatment with MEM could protect against the cytotoxic effects of HQ on human retinal pigment epithelium cells (ARPE-19) and human retinal Müller cells (MIO-M1) in vitro. Methods: Cells were plated, pretreated for 6 h with 30 μM of MEM, and then exposed for 24 h to 200, 100, 50, and 25 μM of HQ while MEM was still present. Cell viability (CV), reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm), and lactate dehydrogenase (LDH) release assays were performed. Results: HQ-treated cells showed a dose-dependent decrease in CV and ΔΨm, but an increase in ROS production and LDH levels in both cell lines. MEM pretreatment reversed the CV in 50, 100, and 200 μM doses in ARPE-19 cells and at all HQ concentrations in MIO-M1 cells compared to HQ-treated cultures. ROS production was reversed in all HQ concentrations in both cell lines. ΔΨm was significantly increased after MEM pretreatment only in 50 μM HQ concentration for both cell lines. LDH levels were decreased at 50 and 25 μM HQ in ARPE-19 and MIO-M1 cells, respectively. Conclusion: HQ-induced toxicity is concentration dependent in ARPE-19 and MIO-M1 cultures. MEM exerts protective effects against HQ-induced toxicity on human retinal pigment epithelial and Müller cells in vitro

    Staphylococcus aureus Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance

    Get PDF
    Many important cellular processes are performed by molecular machines, composed of multiple proteins that physically interact to execute biological functions. An example is the bacterial peptidoglycan (PG) synthesis machine, responsible for the synthesis of the main component of the cell wall and the target of many contemporary antibiotics. One approach for the identification of essential components of a cellular machine involves the determination of its minimal protein composition. Staphylococcus aureus is a Gram-positive pathogen, renowned for its resistance to many commonly used antibiotics and prevalence in hospitals. Its genome encodes a low number of proteins with PG synthesis activity (9 proteins), when compared to other model organisms, and is therefore a good model for the study of a minimal PG synthesis machine. We deleted seven of the nine genes encoding PG synthesis enzymes from the S. aureus genome without affecting normal growth or cell morphology, generating a strain capable of PG biosynthesis catalyzed only by two penicillin-binding proteins, PBP1 and the bi-functional PBP2. However, multiple PBPs are important in clinically relevant environments, as bacteria with a minimal PG synthesis machinery became highly susceptible to cell wall-targeting antibiotics, host lytic enzymes and displayed impaired virulence in a Drosophila infection model which is dependent on the presence of specific peptidoglycan receptor proteins, namely PGRP-SA. The fact that S. aureus can grow and divide with only two active PG synthesizing enzymes shows that most of these enzymes are redundant in vitro and identifies the minimal PG synthesis machinery of S. aureus. However a complex molecular machine is important in environments other than in vitro growth as the expendable PG synthesis enzymes play an important role in the pathogenicity and antibiotic resistance of S. aureus

    May measurement month 2018: a pragmatic global screening campaign to raise awareness of blood pressure by the International Society of Hypertension (vol 40, pg 2006, 2019)

    Get PDF

    Differential Expression of Complement Markers in Normal and AMD Transmitochondrial Cybrids

    No full text
    PURPOSE: Variations in mitochondrial DNA (mtDNA) and abnormalities in the complement pathways have been implicated in the pathogenesis of age-related macular degeneration (AMD). This study was designed to determine the effects of mtDNA from AMD subjects on the complement pathway. METHODS: Transmitochondrial cybrids were prepared by fusing platelets from AMD and age-matched Normal subjects with Rho0 (lacking mtDNA) human ARPE-19 cells. Quantitative PCR and Western blotting were performed to examine gene and protein expression profiles, respectively, of complement markers in these cybrids. Bioenergetic profiles of Normal and AMD cybrids were examined using the Seahorse XF24 flux analyzer. RESULTS: Significant decreases in the gene and protein expression of complement inhibitors, along with significantly higher levels of complement activators, were found in AMD cybrids compared to Older-Normal cybrids. Seahorse flux data demonstrated that the bioenergetic profiles for Older-Normal and Older-AMD cybrid samples were similar to each other but were lower compared to Young-Normal cybrid samples. CONCLUSION: In summary, since all cybrids had identical nuclei and differed only in mtDNA content, the observed changes in components of complement pathways can be attributed to mtDNA variations in the AMD subjects, suggesting that mitochondrial genome and retrograde signaling play critical roles in this disease. Furthermore, the similar bioenergetic profiles of AMD and Older-Normal cybrids indicate that the signaling between mitochondria and nuclei are probably not via a respiratory pathway
    corecore