157 research outputs found

    Chemical Recycling of Polymethacrylates Synthesized by RAFT Polymerization

    Get PDF
    Reversing controlled radical polymerization and regenerating the monomer has been a long-standing challenge for fundamental research and practical applications. Herein, we report a highly efficient depolymerization method for various polymethacrylates synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization. The depolymerization process, which does not require any catalyst, exhibits near-quantitative conversions of up to 92%. The key aspect of our approach is the utilization of the high end-group fidelity of RAFT polymers to generate chain-end radicals at 120 °C. These radicals trigger a rapid unzipping of the polymethacrylates. The depolymerization product can be utilized to either reconstruct the linear polymer or create an entirely new insoluble gel that can also be subjected to depolymerization. Our depolymerization strategy offers a promising route towards the development of sustainable and efficient recycling methods for complex polymer materials

    Aqueous copper(II) photoinduced polymerization of acrylates : low copper concentration and the importance of sodium halide salts

    Get PDF
    Photoinduced metal mediated radical polymerization is a rapidly developing technique which allows for the synthesis of macromolecules with defined molecular weight and narrow molecular weight distributions, although typically exhibiting significant limitations in aqueous media. Herein we demonstrate that the presence of alkali metal halide salts in conjunction with low copper concentration and UV irradiation, allows for the controlled polymerization of water soluble acrylates in aqueous media, yielding narrow molecular weight distributions and high conversions. Despite the aqueous environment which typically compromises polymer end group fidelity, chain extensions have also been successfully performed and different degrees of polymerization were targeted. Importantly, no conversion was observed in the absence of UV light and the polymerization could be switched “on” and “off” upon demand as demonstrated by intermittent light and dark periods and thus allowing access to spatiotemporal control

    Copper mediated reversible deactivation radical polymerization in aqueous media

    Get PDF
    Key advances within the past 10 years have transformed copper mediated radical polymerization from a technique which was not very tolerant to protic media into a range of closely related processes capable of control over the polymerization of a wide range of monomers in pure water at ppm catalyst loadings; yielding water soluble macromolecules of desired molecular weight, architecture and chemical functionality, with applications ranging from drug delivery to oil field recovery. In this review we highlight and critically evaluate the synthetic methods that have been developed to control radical polymerization in water using copper complexes, identify future areas of interest and challenges still to be overcome

    Copper mediated polymerization without external deoxygenation or oxygen scavengers

    Get PDF
    Overcoming the challenge of rigorous deoxygenation in copper mediated controlled radical polymerization processes (e.g. ATRP), we report a simple Cu(0)‐RDRP system in the absence of external additives (e.g. reducing agents, enzymes etc.). By simply adjusting the headspace of the reaction vessel, a wide range of monomers, namely acrylates, methacrylates, acrylamides and styrene, can be polymerized in a controlled manner yielding polymers with low dispersities, near‐quantitative conversions and high end group fidelity. Significantly, this approach is scalable (~ 125 g), tolerant to elevated temperatures, compatible with both organic and aqueous media and does not rely on external stimuli which may limit the monomer pool. The robustness and versatility of this methodology is further demonstrated by the applicability to a number of other copper mediated techniques including conventional ATRP and light‐mediated approaches

    Cu(0)-RDRP of methacrylates in DMSO: importance of the initiator

    Get PDF
    The controlled radical polymerization of methacrylates via Cu(0)-mediated RDRP is challenging in comparison to acrylates with most reports illustrating higher dispersities, lower monomer conversions and poorer end group fidelity relative to the acrylic analogues. Herein, we present the successful synthesis of poly(methyl methacrylate) (PMMA) in DMSO by judicious selection of optimal reaction conditions. The effect of the initiator, ligand and temperature on the rate and control of the polymerization is investigated and discussed. Under carefully optimized conditions enhanced control over the molecular weight distributions is obtained furnishing methacrylic polymers with dispersities as low as 1.10, even at very high conversions. A range of methacrylates were found to be tolerant to the optimized polymerization conditions including hydrophobic, hydrophilic and functional methacrylates including methyl and benzyl methacrylate, ethylene glycol methyl ether methacrylate and glycidyl methacrylate. The control retained during the polymerization is further highlighted by in situ chain extensions yielding well-defined block polymethacrylates

    Polymerisation of 2-acrylamido-2-methylpropane sulfonic acid sodium salt (NaAMPS) and acryloyl phosphatidylcholine (APC) via aqueous Cu(0)-mediated radical polymerisation

    Get PDF
    The scope of aqueous Cu(0)-mediated living radical polymerisation has been expanded with the preparation of poly(2-acrylamido-2-methylpropane sulfonic acid sodium salt (P(NaAMPS)) and poly(acryloyl phosphatidycholine) (PAPC). Manipulation of the reaction conditions furnishes polymers capable of undergoing chain extension and supporting the synthesis of block copolymers at 0 °C

    Methacrylic block copolymers by sulfur free RAFT (SF RAFT) free radical emulsion polymerisation

    Get PDF
    We demonstrate the use of sulfur free reversible addition-fragmentation chain transfer polymerisation (RAFT as a versatile tool for the controlled synthesis of methacrylic block and comb-like copolymers. Sulfur free RAFT (SF-RAFT) utilises vinyl terminated macromonomers obtained via catalytic chain transfer polymerisation (CCTP) of methacrylates as a chain transfer agent (CTA), and thus precluding adverse aspects of the RAFT such as toxicity of dithioesters. We have synthesised a range of narrow dispersity block copolymers (Đ < 1.2) and comb-like macromolecules by employing emulsion polymerisation allowing for the preparation of relatively large quantities (~50 g) of the above mentioned copolymers promptly and straightforwardly. Copolymers were characterised using 1H NMR, size exclusion chromatography (SEC), thermogravimetric analysis (TGA) and matrix-assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-TOF-MS) techniques

    Controlling dispersity in aqueous atom transfer radical polymerization: rapid and quantitative synthesis of one-pot block copolymers

    Get PDF
    The dispersity of polymers is efficiently controlled in aqueous atom transfer radical polymerization by modulating the reversible dissociation of the bromide ion from the copper deactivator

    Ultra-low volume oxygen tolerant photoinduced Cu-RDRP

    Get PDF
    We introduce the first oxygen tolerant ultra-low volume (as low as 5 ÎŒL total reaction volume) photoinduced copper-RDRP of a wide range of hydrophobic, hydrophilic and semi-fluorinated monomers including lauryl and hexyl acrylate, poly(ethylene glycol methyl ether acrylate) and trifluoroethyl (meth)acrylate. In the absence of any external deoxygenation, well-defined homopolymers can be obtained with low dispersity values, high end-group fidelity and near-quantitative conversions. Block copolymers can be efficiently synthesized in a facile manner and the compatibility of the system to larger scale polymerizations (up to 0.5 L) is also demonstrated by judiciously optimizing the reaction conditions. Importantly, the online monitoring of oxygen consumption was also conducted through an oxygen probe and the role of each component is identified and discussed
    • 

    corecore