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Key advances within the past 10 years have transformed copper mediated radical polymerization from a technique 

which was not very tolerant to protic media into a range of closely related processes capable of control over the 

polymerization of a wide range of monomers in pure water at ppm catalyst loadings; yielding water soluble 

macromolecules of desired molecular weight, architecture and chemical functionality, with applications ranging 

from drug delivery to oil field recovery. In this review we highlight and critically evaluate the synthetic methods 

that have been developed to control radical polymerization in water using copper complexes, identify future areas 

of interest and challenges still to be overcome.  
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1. Introduction 

Attaining a high degree of control over molecular weight, macromolecular architecture and 

chemical functionality using radical polymerizations has been a long standing goal in polymer 

chemistry. This was realized to certain extents in the 1990’s with the advent of reversible 
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deactivation radical polymerization (RDRP) techniques. Broadly speaking, the chemistry of an 

RDRP is via a free radical propagating species which exists in an equilibrium with dormant 

species. Whilst only a small proportion of chains are actively propagating at any one instant in 

time, the interconversion between active and dormant states is relatively fast. This results in 

the same probability of growth for each chain yielding polymers with narrow molecular weight 

distributions (dispersity) and a number average molecular weight directly correlated with the 

ratio between monomer and initiator/RDRP agent.  

A particular advantage of RDRP is the ability to control polymerization of vinyl monomers in 

aqueous media. The need for sustainable, high capacity and arguably environmentally friendly 

chemical processes has led to an increase in the use of water as a reaction medium.[1] If a solvent 

is to be used for a chemical reaction, water is inexpensive, non-toxic and readily available. 

Water also has many unique properties which suit it to a wide range of chemistries and 

substrates: its high specific heat capacity is ideal for reactions which are exothermic, the 

solubility of salts allows for many additional effects such as salting-in or salting-out, pH can 

be simply varied, solutions can be buffered, and co-solvents can be utilized to further increase 

solubility and monomer scope. Crucially, the use of water as a reaction solvent is the ideal 

medium for biologically oriented applications – water is the preferred solvent for natural 

processes. 

Scheme 1. Simplified mechanism of atom transfer radical polymerization (ATRP). 

Three main techniques have emerged as the most viable for the polymerization of hydrophilic 

monomers in aqueous media: nitroxide mediated polymerization (NMP),[2] reversible addition 

fragmentation chain transfer (RAFT) polymerization,[3] and copper mediated polymerization 

approaches (ATRP, scheme 1).[4] Both RAFT and NMP have been successfully reported to 

proceed in aqueous media with relatively few restrictions, yielding well-defined polymers with 

narrow molecular weight distributions and high end group fidelity. On the contrary, copper 

mediated polymerization approaches have appeared to be much more sensitive under aqueous 

conditions and for a long time were considered too challenging to achieve. However, owing to 

the additional benefits offered through these strategies, including the possibility to run the 



4 

polymerizations at very low temperatures and the facile functionalization of the halide end 

group, significant attention has been drawn.  

Numerous reviews cover ATRP in heterogeneous aqueous media (i.e. dispersed systems),[5]

but to the best of our knowledge none focus on the advances that have been made in copper 

mediated RDRP in aqueous solution. This review will focus on the developments of copper 

mediated RDRP in homogeneous aqueous media with emphasis given on how to produce well-

defined polymeric materials. Challenges and associated solutions encountered upon conducting 

copper mediated polymerization in aqueous media will be critically discussed and evaluated. 

The mechanism of this chemistry in aqueous media as well as Iron and Ruthenium Mediated 

polymerization has been reviewed elsewhere and will not be the subject of this review.  

2. General Considerations for Copper Mediated Polymerization in Aqueous Media 

2.1. Desirable Qualities in Aqueous Polymerization Systems 

A number of desirable qualities describe an ideal polymerization system in aqueous media. 

Broadly speaking: low copper catalyst concentration, high monomer conversions (ideally 

>90%), high end group fidelity and low temperatures have all been targets of recent 

developments in the field.  

Low catalyst concentration is of importance for two main reasons; to reduce cost and to avoid 

metal contamination of the final material. Using less catalyst enables a more commercially 

exploitable technique, with recent work reducing catalyst concentrations to parts per million 

(ppm) levels in aqueous media.[6] Copper can discolour polymers green/brown (depending on 

the ligands present) thus additional purification techniques to remove metal contamination 

from polymeric products are required. High purity is also particularly required for electronic 

and biologically orientated applications and a reduction in catalyst concentration can aid in the 

facile preparation of these materials.[7] It is noted copper(II) salts are classified as GRAS 

(Generally Regarded As Safe) by the FDA and listed as an essential trace element for most 

plant and animal species.[8] However, despite the disadvantage of residual catalyst (including 

metal and coordinating ligands), the most toxic component of a radical polymerization is the 

monomer (usually activated vinyl monomers such as (meth)acrylates or (meth)acrylamides). 

For this reason high monomer conversion is highly desirable as it allows for fewer or less 

stringent purification procedures to be used which saves time, energy and reduces cost. Another 

benefit of being able to achieve near quantitative conversions with Cu-mediated polymerization 
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is the possibility of in-situ chain extensions to form complex macromolecular architectures. If 

polymerization proceeds to high conversion with high end group fidelity (minimal loss of the 

ω-end group functionality), the synthesis of well-defined block copolymers in a one pot process 

can be achieved by iterative sequential monomer addition, eliminating the need for 

intermediate purification steps and thus significantly speeding up the process. 

Low temperature polymerization methods are of importance as they allow for the synthesis of 

polymers that exhibit thermoresponsive behaviour above certain temperatures in aqueous 

media (e.g. PNiPAm) as well as allowing for polymerization to occur in the presence of 

biological molecules which could potentially be denatured at elevated temperatures (e.g.

enzymes and therapeutically relevant polypeptides.) Lower temperatures are also favourable in 

a number of cases to suppress side reactions.[9] The tertiary alkyl halide initiators/propagating 

chains in most Cu-mediated RDRP’s can also undergo side reactions such as hydrolysis or 

elimination in aqueous media, resulting in loss of functionality, which is exacerbated at higher 

temperatures. Chain-end hydrolysis is discussed in further detail in section 2.2.  

Another more recent consideration in RDRP has been the potential to introduce external stimuli 

to control the polymerization. Specifically, light, mechanical, and electrochemical stimuli have 

been demonstrated to achieve impressive temporal control by switching the polymerization 

“on” and “off” upon demand whilst maintaining narrow molecular weight distributions and 

high end group functionality, as discussed in subsequent sections of this review.[10]

2.2. Challenges in Conducting Copper Mediated Polymerization in Aqueous Media 

ATRP has been reported to have many limitations when carried out in aqueous media. 

Reactions were generally found to be faster and exhibit a lower degree of control over chain 

length and molecular weight distributions which was ascribed to higher radical concentration 

leading to higher rates of radical-radical reaction and side reactions. A number of complex 

processes and equilibria which fundamentally control the catalytic process, thereby altering 

KATRP in water are shown in scheme 2: hydrolysis or elimination of the R-X or P-X bond, 

disproportionation of Cu(I) species to Cu(0) and Cu(II), dissociation of the deactivating Cu(II) 

species, and conventional radical-radical termination reactions.  
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Scheme 2. Mechanism of ATRP with potential side reactions and equilibria in aqueous media: blue: hydrolysis 

of alkyl halide chain end, red: radical-radical termination reactions, orange: disproportionation of Cu(I), green: 

dissociation of halide from Cu(II) complex. 

Perhaps the most significant side reaction associated with ATRP and copper mediated RDRP 

in aqueous media is the solvolytic displacement of halide ligands from deactivating Cu(II) 

complexes. For a controlled radical polymerization to take place the concentration of radicals 

must remain low in order to reduce radical-radical termination reactions, obviously second 

order in [radical]. With ATRP the [radicals] is dictated by KATRP which can be expressed as kact 

/ kdeact. kdeact (governed by the concentration of halide containing ‘deactivating’ Cu(II) species) 

must be higher than kact in order to keep radical concentration low. In aqueous media a problem 

arises because the highly polar nature of water aids the solvation of halide ions through the 

formation of hydrogen bonds. This can result in a very high proportion of Cu(II) species, 

depending on the ligands used, which cannot transfer a halide to a propagating polymer chain. 

Electrochemical investigation of activation and deactivation rates in aqueous media for 

common catalyst systems by Fantin et al. demonstrate that deactivation by dissociated complex 

is in fact highly efficient, but is hampered by the weak Cu-X bond.[11]  It has been suggested 

that the free coordination site is then occupied by solvent[12] or by polar monomers.[11, 13]

Hydrolysis of the alkyl halide at the ω chain end can be a significant problem in aqueous media 

which results in a loss of end group fidelity as the hydroxyl terminated polymer is unable to 

participate in further chain growth. This results in dead chains and broadening of the molecular 

weight distribution. The rate of hydrolysis in Cu-RDRP’s has been demonstrated to be 

effectively independent of copper concentration,[14] indicating that copper mediated hydrolysis 

is not significant, but is of course dependent on the halide (R-Br is more readily hydrolyzed 

than R-Cl) and the nature of the monomer used (i.e. the nature of the alkyl halide polymer chain 

end). Hydrolysis can be particularly problematic in the polymerization of acrylamides, in which 
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it has been postulated that the nitrogen atom present in the penultimate monomer unit 

undergoes an intramolecular substitution reaction with the polymer chain end, giving a cyclized 

structure highly susceptible to hydrolysis.[15] Rapid disproportionation of Cu(I) to Cu(II) and 

Cu(0) in water is a further factor that complicates aqueous Cu-RDRP. Although 

disproportionation in many organic solvents e.g. toluene and acetonitrile is not appreciable, in 

highly polar aqueous media and in the presence of many common ligands it can be significant. 

Initially, disproportionation was presented as an undesirable side reaction which should be 

avoided, however, recent work showed that it can in fact be beneficial under certain conditions 

(see section 5.)  

All of these processes can contribute to unbalancing the RDRP equilibrium, resulting in ‘dead’ 

chains from hydrolysis, altered activator and deactivator concentrations from 

disproportionation, and loss of deactivating species from dissociation. The net effect of this is 

often seen as a fast polymerization rate and poor control over molecular weight and molecular 

weight distributions. Over the past 20 years different approaches to copper mediated RDRP 

have been developed which overcome these issues, as described in sections 3, 4, and 5 of this 

review.  

3. Conventional ATRP in Aqueous Media 

Conventional (or normal) ATRP is defined here as a process where Cu(I) is directly introduced 

(and NOT generated in situ) in the reaction mixture before the beginning of the polymerization. 

On many occasions, an additional amount of Cu(II) is also added in the reaction mixture. Early 

work concerning conventional ATRP indicated that the process was not very tolerant to protic 

media. A series of reviews discussing controlled/‘living’ polymerization from 2001 cite very 

few successfully controlled ATRP processes in water.[5]  One of the first reported examples is 

the polymerization of hydroxyethyl acrylate (HEA) in the presence of 2,2-bipyridine (bpy), by 

Matyjaszewski and coworkers in 1998.[16] Initial, experiments were carried out in bulk 

furnishing conversions of ~90% with dispersity values as low as 1.15 measured by size 

exclusion chromatography (SEC). When the same experiments were repeated in aqueous 

solution (HEA:H2O, 1:1 v/v),  broader molecular weight distributions (Đ > 1.30) were 

obtained.[16]

In 1999, utilizing a similar system of bpy with Cu(I)Cl and Cu(I)Br, Armes and coworkers 

reported the rapid polymerization of poly(ethylene glycol) methyl ether methacrylate 

(PEGMA) in aqueous solution.[17] Reactions were conducted at 20 °C (the first examples of 
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room temperature aqueous ATRP) and high conversions (>95%) were obtained in short time 

periods (~20 minutes) with dispersities as low as 1.12.[18] Selected reactions carried out in bulk 

were found to be significantly slower than analogous reactions in aqueous media. It was 

postulated that differences in the formed copper complexes in water are the reason for the 

observed rate acceleration. Similar conditions were also reported to control the polymerization 

of sodium methacrylate (NaMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA), 

albeit with significantly lower conversion and higher dispersities, attributed to loss of catalyst 

activity through reactions with the functional monomer.[19]

Pyridyl methanimines, as developed by the Haddleton group, showed a number of advantages 

over bpy in organic media such as being particularly effective for the polymerization of low kp

monomers such as methacrylates.[20] In a collaboration between Armes and Haddleton, ligands 

of this type were used that formed soluble complexes with copper in aqueous solution.[21]

PEGMA was polymerized at 20 °C to high conversions (>90%) in a period of just 5 minutes, 

with dispersities between 1.10-1.40. Although pyridyl methanimines might not be expected to 

be stable to hydrolysis, the high rate of polymerization means that hydrolysis is negligible 

within the timeframe of the reaction and no ligand hydrolysis was observed. This is further 

supported by reactions carried out at higher temperatures, which exhibited faster rates but 

broader molecular weight distributions.[21]

Poly(acrylamides) have proved to be much more difficult to synthesize by conventional ATRP 

in aqueous media.[15, 22] In 2003 Jewrajka and Mandal reported the ATRP of acrylamide (AAm) 

in aqueous and mixed aqueous/glycerol systems.[23] Both alkyl chloride and bromide initiators 

with bpy both resulted in poor control over polymerization, with dispersities around 1.7 and 

low molecular weight tailing evident in SEC chromatograms. A later report using PMDETA 

as the ligand achieved a higher degree of control over polymerization (Đ as low as 1.24), albeit 

at severely limited conversions (9% in 48 h).[24] Similar trends were also noted by Jiang et al. 

using a tetramethylethylenediamine (TMEDA) ligand, with conversions below 20% in most 

cases and dispersities between 1.2-1.6.[25] More recently, Broekhuis and coworkers reported 

the polymerization of AAm and NiPAm using a Cu(I)X/tris[2-(dimethylamino)ethyl]amine 

(Me6Tren) catalyst (figure 1).[26] The process exhibited a linear increase of molecular weight 

with conversion and reactions proceeded to relatively high conversions, however the degree of 

control (Đ > 1.4) is significantly poorer than that normally exhibited for ATRP of 

(meth)acrylates in organic media.  



9 

Figure 1. ATRP of AAm and NiPAm in aqueous media. Figure adapted with permission from reference 26. 

Copyright 2012 American Chemical Society.    

Despite some success, particularly with water soluble methacrylates, conventional ATRP in 

aqueous environments has been shown to have significant drawbacks such as limited monomer 

scope (acrylamide polymerization is not reported to be controlled) and limited demonstration 

of end group fidelity. Additionally, despite control over the chain length and dispersity of the 

products in certain cases, all of the examples of normal ATRP in aqueous media described 

above use at least stoichiometric amounts of copper(I) halide and ligand with respect to the 

number of polymer chains. As described in section 2.1, high copper concentrations (typically 

~5000 ppm or higher) can be disadvantageous due to the added cost of purification, potential 

toxicity, and discolouration of products. Higher catalyst concentrations are necessary in 

conventional ATRP due to the high concentration of radicals present during the establishment 

of the ATRP equilibrium which leads to radical-radical termination events resulting in an 

associated increase in deactivator and decrease in activator, known as the persistent radical 

effect (PRE).[27] Using stoichiometric amounts of catalyst ensures there is still sufficient 

activating species present at equilibrium. A further reason, particularly noteworthy for 

polymerization in aqueous media, is that higher concentration of Cu(II) species in solution will 

lessen the observed effect of dissociation, whereby the concentration of halide containing 

deactivating Cu(II) species at the dissociation equilibrium is still sufficient to control 

polymerization; as discussed in section 2.2. A number of different approaches have been 
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subsequently developed which utilize external stimuli, either chemical or physical, to 

regenerate the active species lost during the initial stages of ATRP (scheme 3), hence allowing 

for much lower catalyst concentrations to be employed (section 4).  

4. Activator Regeneration Methods in Aqueous Media 

Scheme 3. Scheme depicting the numerous methods of activator regeneration used in ATRP. 

4.1 Initiators for Continuous Activator Regeneration (ICAR) ATRP 

Initiators for continuous Activator Regeneration (ICAR) ATRP, first reported in the mid 

2000’s, uses a small amount of free radical initiator which can abstract the bromine atom from 

Cu(II) deactivating species to generate Cu(I) activating species. The continuous regeneration 

of activating species from deactivating species[28] facilitated by the radical initiator allows for 

much lower copper concentrations to be used compared to normal ATRP.[29] In 2012, 

Konkolewicz et al. successfully reported the first example of ICAR ATRP in water (figure 

2).[6c] In the presence of low copper concentrations (<100 ppm well-defined poly(PEGMA) 

was obtained with dispersities between 1.09 and 1.56 (Mn = 37-70 kDa.) The key to controlling 

polymerization was found to be addition of a bromide salt, tetraethylammonium bromide 

(Et4N+Br-), which reduced the dispersity of the products from ~2 to as low as 1.09. This is 

attributed to the bromide ion promoting the formation of the Cu(II) deactivating complex, as 

supported by an associated decrease in rate with increasing salt concentration. The work also 

demonstrated the synthesis of a thermoresponsive block copolymer. Poly(PEGMA) (Mn = 16.5 
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kDa, Đ = 1.41)  was synthesized and then isolated to yield a macroinitiator used in the further 

ICAR ATRP of poly(ethylene oxide) methyl ether acrylate (PEGA) resulting in a block 

copolymer (Mn = 40 kDa, Đ = 1.39). Although block copolymer synthesis was successful the 

dispersity of the obtained block was 1.39, which is relatively broader than other examples in 

aqueous media by other Cu-RDRP techniques, this is likely to be due to the 

homopolymerization of PEGA initiated by the ICAR agent, as discussed in the original report 

of ICAR ATRP.[29] Thus, ICAR ATRP is a promising technique for controlled polymerization 

in aqueous media, but drawbacks including the sacrifice of end group fidelity and dispersity 

due to the addition of the free radical initiator would seem to limit its applicability for the 

synthesis of high order macromolecular architectures. 

Figure 2. Representation of ICAR ATRP in water to synthesize thermoresponsive block copolymers. Figure 

adapted with permission from reference 6c. Copyright 2012 American Chemical Society.    

4.2. Activators (Re)Generated by Electron Transfer (AGET/ARGET) ATRP 

Activators generated by electron transfer (AGET) ATRP is a process whereby activator (Cu(I) 

species) is generated from an oxidatively stable Cu(II) species through utilization of a reducing 

agent. The process was first reported to effectively control polymerization in water in 2006 by 

Matyjaszewski and coworkers.[30] Using the air stable Cu(II)/TPMA, ascorbic acid was used as 

a reductant to facilitate the in-situ generation of a Cu(I) complex yielding poly(PEGMA) with 
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molecular weights of up to 87 kDa with dispersities lower than 1.3. In 2011 Averick et al. 

reported polymerization of PEGMA from bovine serum albumin (BSA) modified to contain 

alkyl halide initiating motifs in biologically relevant aqueous media, later expanded upon by 

Maynard and coworkers.[31] Polymerization was carried out at 30 °C in phosphate buffer 

solution (PBS), with Cu(II)/TPMA and ascorbic acid (figure 3). SEC analysis of polymers after 

cleavage from the protein yielded dispersities of 1.19, with an Mn of 83 kDa. Synthesis of 

protein-polymer hybrids (PPH’s) by this ‘grafting-from’ approach is one of the key benefits of 

aqueous ATRP techniques, however copper concentrations in the reaction were very high, with 

10 equivalents of Cu(II) per equivalent of initiator, meaning extensive purification of the final 

PPH was required.  

Figure 3: Synthesis of PPHs via (AGET) ATRP from [BSA]-O-iBBr30 and Selective Cleavage of Polymer. Figure 

adapted with permission from reference 31a. Copyright 2012 American Chemical Society.    

Activators regenerated by electron transfer (ARGET) ATRP follows a similar concept to 

AGET. In ARGET the reducing agent is slowly fed into the reaction, thus allowing for lower 

copper concentrations to be utilized, as (re)generation of Cu(I) from Cu(II) can occur 

throughout the reaction. Commonly employed reducing agents include FDA approved tin(II) 

2-ethylhexanoate (Sn(EH)2), ascorbic acid, and reducing sugars such as glucose.[32] In contrast 

to ICAR, ARGET is better suited to the preparation of block copolymers as the means of 

reducing deactivator cannot initiate homopolymerization during the formation of the second 

block.  
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Figure 4: Aqueous ARGET ATRP of PEGMA utilizing Cu/TPMA catalyst system, demonstrating temporal 

control. Figure adapted with permission from reference 33. Copyright 2012 American Chemical Society.    

Aqueous ARGET ATRP was first reported in 2012 by Matyjaszewski and coworkers.[33] As 

opposed to ARGET ATRP carried out in organic media, aqueous ARGET ATRP is much more 

sensitive and relies on a number of factors including gradual feeding of the reducing agent and 

addition of a simple halide salt. A Cu/TPMA catalyst system was selected due to its stability 

at low concentrations and negligible disproportionation in aqueous media. It was demonstrated 

that feeding of the reducing agent (ascorbic acid) so that reduction occurred at a steady rate 

throughout the polymerization gave better control, in line with previous studies.[31a]

Experiments in which feeding was not used resulted in poor control, attributed to significant 

termination events with the Cu/TPMA catalyst. In agreement with the previously discussed 

report on aqueous ICAR ATRP it was found that ARGET ATRP also required the presence of 

a halide salt in solution to provide halide ions which promote deactivator formation. 

Polymerization of PEGMA proceeded to conversions of ~70% with dispersities of 1.3 and 

below at a reaction temperature of 30 °C. Temporal control of the reaction was demonstrated 

by stopping and starting the feed of reducing agent, with a decrease in rate associated with the 

ceased addition of ascorbic acid (figure 4), although the control was not as pronounced as other 

techniques which have since been developed.   

4.3 Electrochemically Mediated (eATRP) 

Electrochemical ATRP (eATRP) reversibly generates Cu(I) species from air-stable Cu(II) by 

applying an electrochemical potential.[34] Varying the applied potential can effectively control 

the rate of polymerization. Furthermore, cycling between time periods of applied potential and 

periods of no potential show that polymerization is slowed when electrochemical regulation 

was not employed, demonstrating a degree of temporal control over the reaction. 
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Following on from the initial report of copper based eATRP in organic media, Matyjaszewski 

and coworkers expanded the technique to the polymerization of PEGMA in aqueous media.[35]

Reactions were conducted with a Cu/TPMA catalyst in water with various electrolytes 

including tetraethylammonium tetrafluoroborate (Et4N+BF4
-), PBS buffer and Et4N+Br-. As 

with the polymerization of methyl acrylate (MA) reported in organic media, increasing the 

magnitude of the applied potential was found to increase the rate of the polymerization, 

however in aqueous media it was found that a high rate had negative consequences on the 

degree of control over the polymerization. EApp of -0.55 V (vs. standard calomel electrode) 

yielded poly(PEGMA) with a dispersity of 1.58, decreasing EApp to -0.31 V decreased the rate 

of polymerization but had little effect on the degree of control (Đ = 1.53). Further reduction of 

EApp to -0.21 V again showed a decrease in rate but with a marked increase in control (Đ = 

1.16) at 99% monomer conversion. Low levels of control at higher applied potential is 

attributed to increased bimolecular termination reactions at higher radical concentrations. One 

of the drawbacks of this protocol is the use of platinum electrodes, which is present an obstacle 

to larger scale synthesis due to cost. In 2016 Isse and coworkers demonstrated that eATRP 

could also be conducted with non-noble metals such as NiCr and stainless steel by using a 

simplified reaction setup (an undivided cell and galvanostatic mode).[36]

Aqueous eATRP has also been reported to control the polymerization of acrylamides, 

significant due to the inability of many other ATRP techniques to effectively control the 

polymerization of this class of monomer.[37] In one report Chmielarz et al. investigated 

polymerization of AAm in mixed aqueous media (10 % v/v dimethyl formamide (DMF)). Of 

the catalysts employed, Cu/Me6Tren catalyst system exhibited the best degree of control (Đ as 

low as 1.09). In-situ chain extension with NiPAm demonstrated retention of the halide end 

group, however conversions of AAm were not reported to be quantitative, resulting in the 

second block being a statistical copolymer of AAm and NiPAm. Chain extension by means of 

isolating a polyacrylamide macroinitiator was not reported, indicating that aqueous eATRP is 

perhaps not an ideal approach for the synthesis of well-defined acrylamide block copolymer 

architectures. 

4.4 Photoinduced ATRP 

External regulation of RDRP’s by photochemical mediation has attracted considerable 

attention in recent years due to wide availability, environmental benignity and the possibility 

of simple switching between active and dormant states.[10, 38] Copper mediated photo-ATRP 
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relies on free amine ligand in solution that is able to reduce Cu(II) species to Cu(I) when in a 

photoexcited state.  

Photoinduced ATRP was first reported in aqueous media in 2015 by Matyjaszewski and 

coworkers, promoted by visible light and a Cu(II)X2/TPMA catalyst.[6a] PEGMA was able to 

be polymerized to high molecular weights (Mn > 100 kDa) with dispersities as low as 1.07. The 

key to controlling the reaction was found to be addition of an additional halide salt, which 

offsets the dissociation of Cu(II) species in aqueous media, as discussed in section 2.2. End 

group fidelity was demonstrated through chain extension of an isolated macroinitiator with a 

lower molecular weight PEGMA monomer to yield block copolymers with high molecular 

weight (Mn = 139 kDa, Đ = 1.22). Temporal control was also demonstrated by cycling the 

reaction between periods of illumination and darkness.  

Figure 5: Scheme demonstrating reduction of Cu(II) by photoexcitation of ligand in photo ATRP, and 

demonstration of temporal control. Figure adapted with permission from references 6a and 6b. Copyright 2015 & 

2016 American Chemical Society. 

An initial report by Haddleton and coworkers of photo polymerization of acrylates using a UV 

activated Cu(II)Br2/Me6Tren catalyst system found that reactions using these conditions were 

uncontrolled in water with dispersities >2, despite the high degree of control and synthetic 

versatility seen in organic media.[39] A later investigation into aqueous photopolymerization 
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utilizing this catalyst system found that drastically increasing the catalyst concentration was 

able to effectively control the polymerization of PEGA, indicating that dissociation of the 

Cu(II)X2/L species is responsible for the poor control initially observed.[6b] Catalyst 

concentrations were reduced significantly whilst maintaining control over the polymerization 

by addition of sodium bromide, whereby the addition of excess free halide in solution drives 

the dissociation equilibrium to the dissociated species capable of deactivating propagating 

radicals (see section 2.2.) Three equivalents of sodium bromide with respect to initiator resulted 

in poly(PEGA) with dispersities as low as 1.11 at a copper concentration of 67 ppm. Control 

over polymerization was demonstrated at copper concentrations as low as 26 ppm. The 

technique was also demonstrated to be able to polymerize HEA and 3-sulfopropyl acrylate 

potassium salt with a similar degree of control. Quantitative monomer conversion was achieved 

for all polymerizations of PEGA, a feature which was exploited for an in-situ chain extension 

to demonstrate high end group fidelity. Temporal control over the reaction was found to be 

good, with no conversion of monomer detected during periods in which the reaction vessel was 

transferred to a dark room (figure 5), even over an extended period of time (6 hours).  

4.5 Supplemental Activator and Reducing Agent (SARA) ATRP 

Supplemental activator and reducing agent (SARA) ATRP utilizes a species which can reduce 

deactivator to activator in a similar manner to ARGET (section 4.2), whilst also activating alkyl 

halides independent of other ATRP components. Most reports concerning SARA ATRP utilize 

Cu(0) as the SARA agent, however due to the large body of work associated with aqueous 

RDRP in the presence of Cu(0) and the mechanistic debate within the literature,[4b] Cu(0)-

RDRP is treated separately in section 5. 

Matyjaszewski and coworkers introduced inorganic sodium sulfites (a common additive in 

wine making) as SARA agents, which have been demonstrated to reduce Cu(II) to Cu(I) and 

activate alkyl halides.[40] Polymerization of MA in organic media was demonstrated using 

various sulfites with a CuBr2/Me6Tren catalyst. More recently sodium sulfites have been 

utilized for SARA ATRP in aqueous media, as shown in figure 6.[41] Aqueous SARA ATRP 

was carried out using TMPA instead of Me6Tren, in an effort to avoid disproportionation of 

Cu(I) formed from reduction of Cu(II). Both PEGA and PEGMA were polymerized with 

dispersities of ~1.20 and the polymerization rate could be slowed by stopping the feeding of 

sulfite.  
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Figure 6: SARA ATRP utilizing sodium sulfite, a common additive in wine making, to reduce Cu(II) and form 

radicals from alkyl halides. Figure adapted with permission from reference 41. Copyright 2017 Royal Society of 

Chemistry. 

5. Aqueous RDRP in the Presence of Metallic Copper (Cu(0)-RDRP) 

RDRP in the presence of metallic copper was first reported Matyjaszewski in 1997 for bulk 

polymerizations,[42] with the intention of utilizing Cu(0) as a reducing agent to reform Cu(I) 

from Cu(II) during polymerization in a process similar to ARGET-ATRP. Matyjaszewski and 

coworkers noted enhanced rates and control over polymerizations in which Cu(0) was present. 

In 2006 Percec and coworkers reported an “ultrafast” polymerization system using Cu(0) in 

dimethyl sulfoxide (DMSO).[43] Cu(0) mediated techniques in water can be broadly 

differentiated by the source of Cu(0) in the reaction, either externally added sources such as 

copper wire or powder, or in-situ generated particles through disproportionation or reduction 

reactions of higher oxidation state copper species. 

5.1 Externally added Cu(0)(wire and powder) 

The first reported method of conducting Cu(0)-RDRP in water was through use of an external 

source of Cu(0), commonly in the form of copper wire or copper powder. Early examples 

include the polymerization of DMAm and NiPAm in a mixed solvent system of methanol 

(MeOH) and water.[44] Experiments with increasing water concentration dramatically increased 

the dispersity of the final product (Đ = 1.12 in pure MeOH, Đ = 1.68 in 30/70 MeOH/H2O), 

indicating a clear loss of control in aqueous environments. Uncontrolled polymerization was 

also reported for Cu(0) wire mediated RDRP of HEA in water, in which it was noted that an 

insoluble gel formed around the wire at the beginning of the reaction.[45]
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In contrast, Cu wire catalyzed polymerization of PEGA in water has been reported to proceed 

to high conversions (>90%) with good control (Đ ~ 1.25).[46] Utilization of halide salts has also 

enabled controlled polymerization of PEGA at ppm copper concentrations.[47] 2-

(hydroxypropyl) methacrylamide, a monomer of considerable interest due to the 

biocompatibility and non-toxic nature of its polymers, has been reported to proceed in water in 

a copper wire catalyzed polymerization, however dispersities were around 1.4.[48]

5.2 In-situ Generation of Cu(0) by Disproportionation of Cu(I) 

In 2013 Haddleton and coworkers introduced a new protocol for Cu(0) mediated RDRP in 

aqueous media, utilizing in-situ generation Cu(0), where Cu(0) is formed from the rapid 

disproportionation of Cu(I) prior to addition of monomer and initiator.[9a] The 

disproportionation equilibrium of Cu(I) in water in the presence of aliphatic tertiary amine 

ligands is extremely high, with kdisp of the order of 106. This is altered when an excess of 

complexing ligand is present, dependent on the relative stabilization of Cu(I)X/L species to 

Cu(II)X2/L species. By utilizing Me6Tren, a ligand which greatly stabilizes Cu(II) in water, 

Cu(I)Br was shown to disproportionate in pure water on a timeframe of  a few seconds (figure 

7), generating metallic Cu(0) particles and Cu(II)Br2/Me6Tren. This disproportionated mixture 

was subsequently deoxygenated by ‘sparging’ with nitrogen for up to15 minutes. An aqueous 

deoxygenated solution of monomer and alkyl halide initiator was then injected into the 

predisproportionated catalyst mixture triggering polymerization. Control over polymerizations 

was shown to be excellent, with dispersities below 1.10 even at quantitative monomer 

conversion. 
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Figure 7: Polymerization of an acrylamide via pre-disproportionation of Cu(I)Br. (a) aqueous solution of 

Me6Tren. (b) Cu(0) particles and Cu(II) complex after addition of Cu(I)Br. (c) solution after addition of monomer 

and initiator. Figure in part adapted with permission from reference 49c. Copyright 2016 Royal Society of 

Chemistry. 

Numerous monomers have been successfully polymerized using this technique, including 

various acrylamides,[9a, 49] acrylates, methacrylates,[50] methacrylic zwitterionic monomers,[51]

polyoxazoline macromonomers,[52] and glycomonomers[53] at room temperature or below. A 

significant advantage of the pre-disproportionation protocol is the ability to control the 

synthesis of poly(acrylamides), a class of monomer shown to be problematic for many by 

traditional ATRP techniques in both aqueous and organic media. The reaction has been 

demonstrated to be tolerant to multiple functional groups, with examples of controlled 

polymerization in biologically relevant aqueous environments such as PBS and blood serum.[54]

In addition to this the Haddleton group also reported controlled Cu(0)-RDRP in alcoholic 

beverages (mixed ethanol-water binary solvents between 3 and 50 vol% ethanol),[55] in which 

it was noted that carbonated solvents (including carbonated drinking water) allowed for both 

controlled polymerization and in-situ depolymerization, a very unusual phenomenon which has 

since been studied in further detail.[56]
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Retention of chain-end functionality at conversions close to 100% is not a common feature of 

Cu mediated RDRP techniques in aqueous media, due to hydrolysis of the alkyl halide ω chain 

end (see section 2.2). In order to reduce the rate of hydrolysis and increase the end group 

functionality the polymerizations were performed in an ice bath rather than room temperature. 

This allowed the synthesis of one-pot block copolymers using a wide range of monomers.[9a, 

49] The ability of the technique to provide access to high-order block copolymer architectures 

was best exemplified by Alsubaie et al.  yielding decablock copolymers prepared in one pot in 

very short time periods (Figure 8).[57] Timing of sequential additions of monomer was found to 

be crucial to controlling polymerization, as leaving the reaction under conditions where [M]~0 

leaves the bromide chain end susceptible to hydrolysis and side reactions.[58] Synthesis of other 

complex macromolecular architectures have also been reported, including multiblock star 

copolymers by Becer and coworkers[59] and well-defined polymer-protein bioconjugates by 

Wilson, Davis and Haddleton.[60]

Figure 8. Synthesis of multi-block copolymers composed of NiPAm, DMA and HEAm by iterative Cu(0)-RDRP 

in H2O, showing 1H NMR spectra and evolution of molecular weight by DMF SEC. Figure Adapted with 

permission from reference 57. Copyright 2015 Royal Society of Chemistry.  
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Aqueous Cu(0)-RDRP by pre-disproportionation has the distinct benefit of being applicable to 

a wide range of monomers (particularly acrylamides) and being ideal for in-situ block 

copolymerizations despite the susceptibility of the bromide ω chain end to hydrolysis.[15, 22a] In 

terms of copper concentration, aqueous Cu(0)-RDRP typically use around 0.4 equivalents of 

Cu(I)Br relative to initiator, this is an improvement over traditional ATRP techniques which 

are usually stoichiometric with respect to copper. However it is still significantly higher than 

activator regeneration ATRP methods which are typically conducted at ppm copper 

concentrations (~0.02 eq. relative to initiator.) 

5.3 In-situ Generation of Cu(0) by Reduction of Cu(II) 

In 2016 Monteiro and coworkers reported a novel method of aqueous Cu(0)-RDRP of NiPAm 

utilizing in-situ generated Cu(0) particles obtained via reduction of Cu(II)Br2 with NaBH4.[61]

The reduction of Cu(II) to Cu(0) was shown to be quantitative and as a result of this the ratio 

between Cu(0) and Cu(II) in polymerizations could be tuned by simply changing the 

stoichiometry between NaBH4 and Cu(II).  Polymerization of NiPAm was demonstrated to 

proceed to conversion close to 100% in just a few minutes with good agreement between 

theoretical and experimental molecular weights. Furthermore, the end group fidelity was also 

shown to be high (~95% at conversions approaching 100%) through matrix-assisted laser 

desorption/ionization time of flight mass spectrometry (MALDI-ToF MS) of samples ‘end-

capped’ by a thio-bromo substitution reaction  to eliminate hydrolysis.[14] This technique is one 

of the few Cu-mediated protocols shown to be effective for polymerizing an acrylamide 

monomer, however the scope currently only encompasses PNiPAm at relatively low molecular 

weights (Mn < 5 kDa) with no demonstration of chain extension, despite the high end group 

fidelity reported. 

6. Monomer Scope of Aqueous Cu Mediated RDRP 

6.1. Acrylates, methacrylates and acrylamides 

The main focus of this review has examined in detail the polymerization of methacrylate, 

acrylate and acrylamide monomers in aqueous solution; all of which can yield water soluble 

materials with wide ranging uses.  Controlled polymerization of (meth)acrylates has been 

successful with many of the techniques described, whereas acrylamide polymerization is more 

problematic, with far fewer reports. However, the development of Cu(0)-RDRP via in-situ 

disproportionation has overcome this limitation, giving controlled polymerization with almost 
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quantitative conversion and end group fidelity; also yielding similar results for the 

polymerization of (meth)acrylates.  

Successful aqueous Cu-mediated RDRP also enables the polymerization of charged and acidic 

monomers, which often have poor solubility in organic solvents. The following sections will 

discuss and examine some of the Cu-mediated RDRP techniques which have enabled advances 

in the polymerization of challenging monomers, for example monomers containing cationic 

amine moieties, acidic groups, and zwitterionic characteristics. 

6.2 Charged Monomers 

Due to the limited solubility of charged and zwitterionic monomers in organic solvents, the 

polymerization of this monomer family is typically limited to aqueous solution, with many 

examples carried out in solvent mixtures commonly of water with DMF, MeOH or isopropanol. 

The polymerization of these monomers and aqueous media in general is incompatible with 

anionic polymerization and is also challenging with controlled radical polymerization 

conditions vary significantly between those used for positive, negative and zwitterionically 

charged monomers. These monomers can often be hygroscopic, difficult to handle, and contain 

acidic functionalities (see subsequent section), for example sulfonates and phosphonates which 

can provide further challenges and compete with the ligand for complexation to the copper 

catalyst. 

The first example of the polymerization of a charged monomer in purely aqueous solution was 

in 2000 by Armes,[62] who reported the polymerization of methacryloxyethyl phosphocholine 

(MPC). The issues surrounding the spontaneous uncontrolled polymerization of this monomer 

were overcome by the rapid rate of ATRP polymerization, yielding 90% conversion in 5 

minutes at ambient temperature. These reactions utilized a Cu(I)Br, bpy catalytic system and 

in all cases illustrated a conversion greater than 96%, but only low molecular weights were 

targeted (less than 10 kDa) and some degree of control was lost at the higher end of this range 

with dispersity of 1.4 for those greater than 7 kDa. The work was later expanded to higher 

molecular weights, by fine tuning the ratio of initiator to copper to ligand, yielding higher 

molecular weights (Mn = 22 kDa , dispersity 1.26).[63] The group subsequently showed the 

presence of end group fidelity by chain extension of PMPC (DP20, 99% conversion, Mn = 6 

kDa, Ð = 1.12) with OEGMA generating a well-defined block copolymer (Mn = 16 kDa, Ð = 

1.27),[64] and also illustrated the first example of a block copolymer of two zwitterionic 

polymers, by incorporating [2-(methacryloyloxy)ethyl]dimethyl(3-sulfopropyl)ammonium 
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hydroxide (SBMA) as the second block. Note however that higher molecular weights, and a 

broader scope of block copolymers could only be achieved by utilizing methanol or methanol 

water mixtures.[63, 65] The copolymerization of SBMA (also known as N,N-dimethyl-N-

methacryloyloxyethyl-N-sulfobutyl ammonium (DMBS)) and acrylamide has also been 

reported utilizing Cu(0)-RDRP in aqueous media, utilising Cu(0) powder and CuCl2/Me6Tren 

as the catalyst.[66] Both PMPC and PSBMA were homopolymerized by Simula et al,[51] utilizing 

the predisproportionation of Cu(I)Cl in the presence of Cu(II)Cl and PMDETA.  

Other reports of charged methacrylates include the synthesis of well-defined poly(2-

[(methacryloyloxy)ethyl]trimethylammoniumdimethylaminoethyl methacrylate 

chloride)(MeDMA) (the quaternized form of PDMAEMA) in aqueous solution utilizing 

aqueous ATRP, with a Cu(I)Br catalyst and bpy as the ligand at room temperature.[67] All 

reactions proceeded to high conversions (>90%) and were reasonably well controlled with 

dispersities of 1.20-1.30. However, similarly to previous reports, to prepare well-defined block 

copolymers solvent mixtures of water with methanol or isopropanol was required. Later, the 

synthesis of star polymers of MeDMA were reported with similar polymerization 

conditions.[68]

The most successful report to date is the polymerization of acryloyl phosphatidyl chloride 

(APC), a zwitterionic acrylate monomer containing ammonium and phosphate functionalities 

via aqueous Cu(0)-mediated LRP, generating PAPC up to DP50 with dispersities in the range 

of 1.07-1.22.[49b] This is the only example of a zwitterionic polymer synthesized with Cu-

mediated RDRP that has a dispersity of less than 1.10, but as in previous cases increasing the 

molecular weight further resulted in a reduction in conversion and a loss of control. However, 

charged or zwitterionic acrylamides and methacrylamides are even less explored than 

methacrylates and acrylates, with the only example up to date being the use of carboxybetaine 

functionalized acrylamide and methacrylamides by Edlund et al, utilizing Cu(0) wire, a 

hemicellulose macroinitiator and Me6Tren as the ligand.[69] Pseudo first order kinetics were 

observed for both monomers, with conversions of greater than 90% achieved suggesting a good 

degree of control over the process, however no SEC data was reported. Further examples are 

limited to solvent mixtures, with poly(3-acrylamidopropyl)-trimethylammonium chloride 

synthesised and chain extended in water ethanol mixtures via Cu(0)-RDRP, illustrated high 

end group fidelity at 90% conversion yielding block copolymers with a dispersity of around 

1.30.[70]
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There are many remaining challenges in the synthesis of charged polymers in pure water via

Cu-mediated RDRP, with limited successful reports to date. The synthesis of block copolymers 

and molecular weights higher than 15 kDa for homopolymers is challenging with broad 

dispersities common, showing there are many remaining avenues of improvement to optimize 

this important group of monomers. 

Figure 9. Examples of charged and acidic monomers successfully polymerized by aqueous Cu-mediated RDRP. 

6.3 Acidic Monomers 

Polymerization of acidic monomers by Cu-RDRP is challenging in both organic and aqueous 

media. Most reports of controlled polymerizations are of monomer salts, in which the acidic 

moiety is not protonated (figure 9). 

The first example of ATRP of an acidic monomer was by Armes and coworkers in 1999.[19]

NaMA, the sodium salt of methacrylic acid (MAA), was polymerized in aqueous media using 

Cu(I)Br and bpy. Molecular weights of up to 7.3 kDa were successfully prepared with good 

conversions (50-80%) with a high degree of control (Đ = 1.20-1.30) However, targeting higher 

molecular weights resulted in a loss of control with Đ > 2. pH was found to be a critical 

parameter for successful polymerization as no polymerization was observed below pH 6, at 

which point bpy becomes protonated. This is a dramatic change from free radical 
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polymerization, in which it is favourable to polymerize MAA at low pH, to avoid a build-up 

of anionic charge on the polymer backbone. The same group also reported the polymerization 

of sodium 4-vinylbenzoate in aqueous solution (pH 11), using Cu(I)Br as the catalyst, a PEG 

functionalized isobutyrate or sodium 4-(bromomethyl)benzoate as an initiator at ambient 

temperature, illustrating linear kinetics and an Mn close to theory, even at very high conversions 

(>95%, Ð =1.30).[71]

Cu(0)-RDRP utilizing predisproportionation of Cu(I)Br has been reported to be efficient for 

the polymerization of the sodium salt of 2-acrylamido-2-methylpropane sulfonic acid 

(NaAMPS), an important monomer in a variety of biological and industrial applications.[72]

Nikolaou et al. demonstrated the polymerization of NaAMPS with molecular weights up to 30 

kDa with dispersities below 1.30.[49b] A monomer with similar functionality, sulfopropyl 

acrylate potassium salt (KSPA), was reported to polymerize with a similar degree of control 

utilizing the predisproportionation of Cu(I)Br in the presence of Me6Tren with a dispersity of 

1.20 for DP40. As target DP was increased beyond 80, control was also lost with dispersities 

greater than 1.50 illustrated in all cases. Low molecular weight PKSPA has also been 

successfully reported by photoinduced ATRP.[6b]

Direct polymerization of acidic monomers in their protonated form, such as MAA or acrylic 

acid (AA), was commonly considered to be impossible for most copper mediated RDRP 

systems, due to protonation of the ligand at the low pH required. Even in organic media only a 

small amount of MAA can be copolymerized whilst retaining control.[73] Direct polymerization 

is attractive as kp can be higher for the protonated monomer (10 times higher in the case of 

MAA vs. NaMA),[74] polymerization is not inhibited by build-up of anionic charge on the 

polymer backbone, complexation to copper will be significantly lessened, and no titration of 

the final product is required. In 2015 Fantin et al. conducted an electrochemical investigation 

into three commonly used catalyst systems in aqueous ATRP: CuX/Me6Tren, CuX/PMDETA, 

and CuX/TPMA, and found that polymerizations of PEGMA with TPMA could proceed 

effectively at low pH (1.5).[75] This apparent stability at low pH was subsequently used to 

demonstrate the polymerization of MAA in acidic aqueous solution using eATRP and Cu(0)-

RDRP (figure 10).[76] Conducted at low pH (~1), poly(MAA) was prepared with molecular 

weights up to 87 kDa, with varying degrees of control (Đ = 1.33->2.0). However, initiator 

efficiencies varied significantly, in some cases being greater than 100%. Despite the high 

conversions attained in some cases, no chain extensions are reported either in-situ or from an 

isolated PMAA macroinitiator.   
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Figure 10. Aqueous e-ATRP and Cu(0)-RDRP of MAA. Figure reprinted with permission from reference 76. 

Copyright 2016 American Chemical Society.  

6.4 Current Limitations of Aqueous Cu-mediated RDRP 

Despite the massive advancements made in controlled polymerization in aqueous media using 

copper catalysts, there are still a number of challenges to be overcome, most of which relate to 

monomer scope; some classes of monomer have yet to be polymerized with high degrees of 

control. 

Polymerization of N-vinyl monomers such as N-vinyl pyrrolidone (NVP) is challenging by Cu-

mediated RDRP; this is due to lack of resonance stabilization of the generated radicals and 

strongly electron donating pendant groups, which makes them highly reactive and means that 

end group fidelity is compromised by radical-radical termination, chain transfer reactions and 

hydrolysis.[77] Few reports also exist of the successful polymerization of methacrylamides, 

either in aqueous or organic media, with results in aqueous media showing linear kinetics but 

a lack of control over molecular weight distributions (Đ = 1.47->2.0).[48] These two monomer 

classes could be particularly useful as their polymers exhibit good water solubility and can 

exhibit interesting biological behaviour.[48, 78] The controlled polymerization of charged 

monomers to high molecular weights with degrees of control similar to uncharged water 

soluble monomers is another key area that needs development in the field of aqueous Cu-

mediated RDRP. 

7. Summary and Outlook  

Aqueous Cu-RDRP has seen very encouraging advances since the first report of ATRP in 

aqueous media. Many techniques have been developed which yield high levels of control over 

chain length, molecular weight distribution, and macromolecular architecture. Activator 

regeneration methods in ATRP allow catalyst concentrations on a ppm level to be utilized to 
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give better control than ever before, and the advent of aqueous Cu(0)-RDRP has made great 

advancements in the synthesis of block copolymers thanks to retention of halide end groups at 

quantitative monomer conversions. However, a number of challenges still remain. Important 

classes of monomers such as NVP and methacrylamide that yield biologically relevant 

polymers are still relatively poorly reported in Cu-RDRP and have not been optimized to the 

same extent that other monomer classes have, with work to date reporting mostly uncontrolled 

polymerizations. There are also limited successful reports of the polymerization of acidic and 

charged monomers in solution and no examples of block copolymer synthesis with protonated 

acidic monomers. Further challenges surrounding the uncontrolled spontaneous 

polymerization of zwitterionic monomers in water has also not been surmounted. Techniques 

which have demonstrated excellent qualities such as ultra-low catalyst loadings and high 

conversions have often only been optimized for one or two monomer classes. An ideal aqueous 

transition metal mediated system able to control the polymerization of a wide range of 

(meth)acrylates, (meth)acrylamides, charged, acidic and N-vinyl monomers to quantitative 

conversions with high end group fidelity at ppm catalyst concentrations still remains elusive. 
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