689 research outputs found

    Evaluation of Mater Bi and Polylactic Acid as materials for biodegradable innovative mini-radiosondes to track small scale fluctuations within clouds

    Get PDF
    Turbulence plays an important part in determining the chemical and physical processes, on both the micro- and macro-scales, whereby clouds are formed and behave. However, exactly how these are linked together and how turbulence impacts each of these processes is not yet fully understood. This is partly due to a lack of in-situ small scale fluctuation measurements due to a limitation in the available technology. It is in this context that the radiosondes, for which the material characterisation is presented in this paper, are being developed to generate a Lagrangian set of data which can be used to improve the ever-expanding knowledge of atmospheric processes and, in particular, the understanding of the interaction between turbulence and micro-physical phenomenologies inside clouds (www.complete-h2020network.eu). Specifically, the materials developed for the balloons are discussed in further detail within this paper. Mater Bi and polylactic acid are the two common biodegradable thermoplastics that were used initially to make the balloons. To tailor their properties, the balloons were then coated with carnauba wax blended with either pine resin or SiO2 nanoparticles. The properties such as hydrophobicity, toughness, elasticity and helium gas permeability are investigated and improved in order to keep the density of the radiosondes as constant as possible for a couple of hours. This will allow them to float inside and outside clouds on an isopycnic surface, to measure various properties such as velocity, temperature, pressure and humidity by means of solid state sensors and to transmit them to receivers on Earth. Tests have been made under a rigorous metrological approach comparing the 6 new materials with two reference balloon materials, latex and mylar. It was found that Mater Bi with the two carnauba wax coatings is the most suited though its roughness and water vapour permeability should be improved

    Life Cycle Assessment of a Circular Economy Process for Tray Production via Water-Based Upcycling of Vegetable Waste

    Get PDF
    With one-third of food being wasted at the various steps of the value chain, there is a large amount of biomass constantly being discarded, also wasting the resources consumed for its production. Several strategies have been proposed to use this biomass as a source of raw materials for the production of plastic alternatives, but the environmental impact parameters have rarely been estimated to understand if the proposed process provides an overall benefit. The purpose of this paper is to analyze, through an experimental laboratory campaign, the production process of a vegetable biocomposite material obtained by valorization of biomass from two sources: unsold vegetables from a wholesale market and carrot pomace obtained as a byproduct of juicing. The obtained biocomposite films were thermoformed into trays to replace the traditional plastic food containers made principally with PET. Different scenarios for the lab-scale production of trays were evaluated by testing two water-based processing methods for the two types of biomass used. In order to understand which of the four scenarios was the least impactful, the global warming potential, the cumulative energy demand, and the water scarcity index were used as indicators. Among the different lab-scale processing scenarios for the upscaling of vegetable waste, the least impactful was starting from the unsold/discarded vegetables collected at the wholesale market that were processed via water-based hydrolysis catalyzed by formic acid. Impact parameters were comparable or better than two traditional polymers (PET and HDPE) and two biopolymers (PLA and biopolymer from starch), showing that this process has excellent potential, from an environmental point of view, of substituting plastic packaging

    Biodegradable All-Polymer Field-Effect Transistors Printed on Mater-Bi

    Get PDF
    The growing demand of disposable electronics raises serious concerns for the corresponding increase in the amount of electronic waste, with severe environmental impact. Organic and flexible electronics have been proposed long ago as a more sustainable and energy-efficient technological platform with respect to established ones. Yet, such technology is leading to a drastic increase of plastic waste if common approaches for flexible substrates are followed. In this scenario, biodegradable solutions can significantly limit the environmental impact, actively contributing to eliminate the waste streams (plastic or electronic) associated with disposal of devices. However, achieving suitably scalable processes to pattern mechanically robust organic electronics onto largely available biodegradable substrates is still an open challenge. In this work, all-organic and highly flexible field-effect transistors, inkjet printed onto the biodegradable and compostable commercial substrate Mater-Bi, are demonstrated. Because of the thermal instability of Mater-Bi, no annealing steps are applied, producing devices with limited carrier mobility, yet showing correct n-type behavior and robustness to bending and crumpling. The degradation behavior of the final system shows unaltered biodegradability level according to ISO 14851. These results represent a promising step toward sustainable flexible and large-area electronics, combining energy and materials efficient processes with largely available biodegradable substrates

    Electrospun silk fibroin fibers for storage and controlled release of human platelet lysate

    Get PDF
    Human platelet lysate (hPL) is a pool of growth factors and cytokines able to induce regeneration of different tissues. Despite its good potentiality as therapeutic tool for regenerative medicine applications, hPL has been only moderately exploited in this field. A more widespread adoption has been limited because of its rapid degradation at room temperature that decreases its functionality. Another limiting factor for its extensive use is the difficulty of handling the hPL gels. In this work, silk fibroin-based patches were developed to address several points: improving the handling of hPL, enabling their delivery in a controlled manner and facilitating their storage by creating a device ready to use with expanded shelf life. Patches of fibroin loaded with hPL were synthesized by electrospinning to take advantage of the fibrous morphology. The release kinetics of the material was characterized and tuned through the control of fibroin crystallinity. Cell viability assays, performed with primary human dermal fibroblasts, demonstrated that fibroin is able to preserve the hPL biological activity and prolong its shelf-life. The strategy of storing and preserving small active molecules within a naturally-derived, protein-based fibrous scaffold was successfully implemented, leading to the design of a biocompatible device, which can potentially simplify the storage and the application of the hPL on a human patient, undergoing medical procedures such as surgery and wound care. Statement of Significance: Human platelets lysate (hPL) is a mixture of growth factors and cytokines able to induce the regeneration of damaged tissues. This study aims at enclosing hPL in a silk fibroin electrospun matrix to expand its utilization. Silk fibroin showed the ability to preserve the hPL activity at temperature up to 60 \ub0C and the manipulation of fibroin's crystallinity provided a tool to modulate the hPL release kinetic. This entails the possibility to fabricate the hPL silk fibroin patches in advance and store them, resulting in an easy and fast accessibility and an expanded use of hPL for wound healing

    Electrically conductive and high temperature resistant superhydrophobic composite films from colloidal graphite

    Get PDF
    Electrically conductive and self-cleaning superhydrophobic films (water contact angles >160°, droplet roll off angles <5°) were fabricated by simply solution casting sub-micron polytetrafluoroethylene (Teflon) particle dispersed alcohol-based colloidal graphite solutions. The process is very suitable for forming conductive superhydrophobic coatings on glasses, metals, ceramics and high performance polymers such as polyimide (Kapton®). The solutions were deposited on microscope glass slides and Kapton® films by drop casting. After solvent evaporation under ambient conditions, the coatings were annealed to melt Teflon. Upon melting, Teflon particles fused into one another forming a hydrophobic polymer matrix. The degree of superhydrophobicity and the surface morphology of the coatings together with their electrical conductivity were studied in detail by varying Teflon-to-graphite weight fractions. A number of applications can be envisioned for these coatings such as electrode materials for energy conversion devices, high performance electromagnetic shielding materials, flexible electronic components and heat exchanger surfaces, to name a few

    Valorization of Tomato Processing by-Products: Fatty Acid Extraction and Production of Bio-Based Materials

    Get PDF
    A method consisting of the alkaline hydrolysis of tomato pomace by-products has been optimized to obtain a mixture of unsaturated and polyhydroxylated fatty acids as well as a non-hydrolysable secondary residue. Reaction rates and the activation energy of the hydrolysis were calculated to reduce costs associated with chemicals and energy consumption. Lipid and non-hydrolysable fractions were chemically (infrared (IR) spectroscopy, gas chromatography/mass spectrometry (GC-MS)) and thermally (differential scanning calorimetry (DSC), thermogravimetric analysis (TGA)) characterized. In addition, the fatty acid mixture was used to produce cutin-based polyesters. Freestanding films were prepared by non-catalyzed melt-polycondensation and characterized by Attenuated Total Reflected-Fourier Transform Infrared (ATR-FTIR) spectroscopy, solid-state nuclear magnetic resonance (NMR), DSC, TGA, Water Contact Angles (WCA), and tensile tests. These bio-based polymers were hydrophobic, insoluble, infusible, and thermally stable, their physical properties being tunable by controlling the presence of unsaturated fatty acids and oxygen in the reaction. The participation of an oxidative crosslinking side reaction is proposed to be responsible for such modifications.Andalusian Regional Government P11-TEP-7418Spanish Ministerio de Economía y Competitividad AGL2015-65246-R and AGL2017-83036-RFondo Europeo de Desarrollo Regional (FEDER) AGL2015-65246-R and AGL2017-83036-

    Green composites of poly(3-hydroxybutyrate) containing graphene nanoplatelets with desirable electrical conductivity and oxygen barrier properties

    Get PDF
    Poly(3-hydroxybutyrate), a green polymer originating from prokaryotic microbes, has been used to prepare composites with graphene nanoplatelets (GnP) at different concentrations. The films were fabricated by drop-casting and were hot-pressed at a temperature lower than their melting point to provide the molecular chains enough energy to reorientate while avoiding melting and degradation. It was found that hot-pressing increases crystallinity and improves mechanical properties. The Young’s modulus increased from 1.2 to 1.6 GPa for the poly(3-hydroxybutyrate) (P(3HB)) films and from 0.5 to 2.2 GPa for the 15 wt % P(3HB)/GnP composites. Electrical resistivity decreases enormously with GnP concentration and hot-pressing, reaching 6 Ω sq–1 for the hot-pressed 30 wt % P(3HB)/GnP composite. Finally, the hot-pressed P(3HB) samples exhibit remarkable oxygen barrier properties, with oxygen permeability reaching 2800 mL μm m–2 day–1, which becomes 895 mL μm m–2 day–1 when 15% GnP is added to the biopolymer matrix, one of the lowest values known for biopolymers and biocomposites. We propose that these biocomposites are used for elastic packaging and electronics
    • …
    corecore