1,369 research outputs found
Exploring Linguistic Challenges and Cultural Competency Development in a Small Multinational Corporation
In 2016\u27s global business landscape, the increase in workers moving across borders to find employment accentuates the language and cultural challenges for both employees and organizations. Employees working in a multinational environment need to have an understanding of language and culture to handle the complex nature of professional work in a multinational corporation (MNC). The purpose of this study was to explore what communication competencies employees in a small MNC needed to communicate across multicultural environments in the workplace. A dialectic approach of intercultural communication was used to explore these needs in one small MNC located in the Kingdom of Saudi Arabia using English as the corporate language. Data were collected from 9 employees of one data security firm using semistructured interviewing, the data was then coded into NVivo. Using interpretative phenomenology analysis, the themes of understanding, cultural sensitivity, pace, and fitting in emerged. Results of the study indicated a disconnect in the cultural mentality of Americanness versus Arabness in the business environment where societal factors and national identity reflected in how the employees think and act in the workplace. Lack of cultural knowledge in an MNC can impact the financial health of an organization in lost opportunities, reduced productivity, and long-term relationship damage with clients and partners. The results of this study could contribute to positive social change by providing small MNCs with the insight to enhance intercultural communication and intercultural awareness among employees in building a global workforce
Crouching Tiger, Hidden Dragon
This is a review of Crouching Tiger, Hidden Dragon (2000)
When The Master Is Not Master: The Critique of Enlightenment in Ang Lee\u27s Crouching Tiger, Hidden Dragon
The concept of enlightenment plays a key role in the plot development of Crouching Tiger, Hidden Dragon. A subtle reading of the film, however, can show how it offers a filmic critique of enlightenment, both as a religious concept associated with Buddhism and as a broader concept associated with mastery in virtually any form (religious, martial, political). This paper argues that Crouching Tiger, Hidden Dragon puts forth a novel image of this concept. According to this image, enlightenment does not produce mastery, as is conventionally thought. Instead, enlightenment paradoxically eschews mastery and critiques the knowledge that supports it
Attentional effects on preattentive vision: spatial precues affect the detection of simple features.
Most accounts of visual perception hold that the detection of primitive features occurs preattentively, in parallel across the visual field. Evidence that preattentive vision operates without attentional limitations comes from visual search tasks in which the detection of the presence or absence of a primitive feature is independent of the number of stimuli in a display. If the detection of primitive features occurs preattentively, in parallel and without capacity limitations, then it should not matter where attention is located in the visual field. The present study shows that even though the detection of a red element in an array of gray elements occurred in parallel without capacity limitations, the allocation of attention did have a large effect on search performance. If attention was directed to a particular region of the display and the target feature was presented elsewhere, response latencies increased. Results indicate that the classic view of preattentive vision requires revision. Most current accounts of human vision suggest that there are two functionally distinct forms of visual informatio
Influence of hand position on the near-effect in 3D attention
Voluntary reorienting of attention in real depth situations is characterized by an attentional bias to locations near the viewer once attention is deployed to a spatially cued object in depth. Previously this effect (initially referred to as the ‘near-effect’) was attributed to access of a 3D viewer-centred spatial representation for guiding attention in 3D space. The aim of this study was to investigate whether the near-bias could have been associated with the position of the response-hand, always near the viewer in previous studies investigating endogenous attentional shifts in real depth. In Experiment 1, the response-hand was placed at either the near or far target depth in a depth cueing task. Placing the response-hand at the far target depth abolished the near-effect, but failed to bias spatial attention to the far location. Experiment 2 showed that the response-hand effect was not modulated by the presence of an additional passive hand, whereas Experiment 3 confirmed that attentional prioritization of the passive hand was not masked by the influence of the responding hand on spatial attention in Experiment 2. The pattern of results is most consistent with the idea that response preparation can modulate spatial attention within a 3D viewer-centred spatial representation
Identification of direct residue contacts in protein-protein interaction by message passing
Understanding the molecular determinants of specificity in protein-protein
interaction is an outstanding challenge of postgenome biology. The availability
of large protein databases generated from sequences of hundreds of bacterial
genomes enables various statistical approaches to this problem. In this context
covariance-based methods have been used to identify correlation between amino
acid positions in interacting proteins. However, these methods have an
important shortcoming, in that they cannot distinguish between directly and
indirectly correlated residues. We developed a method that combines covariance
analysis with global inference analysis, adopted from use in statistical
physics. Applied to a set of >2,500 representatives of the bacterial
two-component signal transduction system, the combination of covariance with
global inference successfully and robustly identified residue pairs that are
proximal in space without resorting to ad hoc tuning parameters, both for
heterointeractions between sensor kinase (SK) and response regulator (RR)
proteins and for homointeractions between RR proteins. The spectacular success
of this approach illustrates the effectiveness of the global inference approach
in identifying direct interaction based on sequence information alone. We
expect this method to be applicable soon to interaction surfaces between
proteins present in only 1 copy per genome as the number of sequenced genomes
continues to expand. Use of this method could significantly increase the
potential targets for therapeutic intervention, shed light on the mechanism of
protein-protein interaction, and establish the foundation for the accurate
prediction of interacting protein partners.Comment: Supplementary information available on
http://www.pnas.org/content/106/1/67.abstrac
Neural Processing of Emotional Musical and Nonmusical Stimuli in Depression
Background Anterior cingulate cortex (ACC) and striatum are part of the emotional neural circuitry implicated in major depressive disorder (MDD). Music is often used for emotion regulation, and pleasurable music listening activates the dopaminergic system in the brain, including the ACC. The present study uses functional MRI (fMRI) and an emotional nonmusical and musical stimuli paradigm to examine how neural processing of emotionally provocative auditory stimuli is altered within the ACC and striatum in depression.
Method Nineteen MDD and 20 never-depressed (ND) control participants listened to standardized positive and negative emotional musical and nonmusical stimuli during fMRI scanning and gave subjective ratings of valence and arousal following scanning.
Results ND participants exhibited greater activation to positive versus negative stimuli in ventral ACC. When compared with ND participants, MDD participants showed a different pattern of activation in ACC. In the rostral part of the ACC, ND participants showed greater activation for positive information, while MDD participants showed greater activation to negative information. In dorsal ACC, the pattern of activation distinguished between the types of stimuli, with ND participants showing greater activation to music compared to nonmusical stimuli, while MDD participants showed greater activation to nonmusical stimuli, with the greatest response to negative nonmusical stimuli. No group differences were found in striatum.
Conclusions These results suggest that people with depression may process emotional auditory stimuli differently based on both the type of stimulation and the emotional content of that stimulation. This raises the possibility that music may be useful in retraining ACC function, potentially leading to more effective and targeted treatments
Brief communication: Rapid machine-learning-based extraction and measurement of ice wedge polygons in high-resolution digital elevation models
We present a workflow for the rapid delineation and microtopographic
characterization of ice wedge polygons within high-resolution digital
elevation models. At the core of the workflow is a convolutional neural
network used to detect pixels representing polygon boundaries. A watershed
transformation is subsequently used to segment imagery into discrete
polygons. Fast training times (<5 min) permit an iterative approach to
improving skill as the routine is applied across broad landscapes. Results
from study sites near Utqiaġvik (formerly Barrow) and Prudhoe Bay, Alaska, demonstrate robust
performance in diverse tundra settings, with manual validations demonstrating
70–96 % accuracy by area at the kilometer scale. The methodology permits
precise, spatially extensive measurements of polygonal microtopography and
trough network geometry.</p
New insights into the drainage of inundated ice-wedge polygons using fundamental hydrologic principles
The pathways and timing of drainage from the inundated centers of ice-wedge polygons in a warming climate have important implications for carbon flushing, advective heat transport, and transitions from methane to carbon dioxide dominated emissions. Here, we expand on previous research using a recently developed analytical model of drainage from a low-centered polygon. Specifically, we perform (1) a calibration to field data identifying necessary model refinements and (2) a rigorous model sensitivity analysis that expands on previously published indications of polygon drainage characteristics. This research provides intuition on inundated polygon drainage by presenting the first in-depth analysis of drainage within a polygon based on hydrogeological first principles. We verify a recently developed analytical solution of polygon drainage through a calibration to a season of field measurements. Due to the parsimony of the model, providing the potential that it could fail, we identify the minimum necessary refinements that allow the model to match water levels measured in a low-centered polygon. We find that (1) the measured precipitation must be increased by a factor of around 2.2, and (2) the vertical soil hydraulic conductivity must decrease with increasing thaw depth. Model refinement (1) accounts for runoff from rims into the ice-wedge polygon pond during precipitation events and possible rain gauge undercatch, while refinement (2) accounts for the decreasing permeability of deeper soil layers. The calibration to field measurements supports the validity of the model, indicating that it is able to represent ice-wedge polygon drainage dynamics. We then use the analytical solution in non-dimensional form to provide a baseline for the effects of polygon aspect ratios (radius to thaw depth) and coefficient of hydraulic conductivity anisotropy (horizontal to vertical hydraulic conductivity) on drainage pathways and temporal depletion of ponded water from inundated ice-wedge polygon centers. By varying the polygon aspect ratio, we evaluate the relative effect of polygon size (width), inter-annual increases in active-layer thickness, and seasonal increases in thaw depth on drainage. The results of our sensitivity analysis rigorously confirm a previous analysis indicating that most drainage through the active layer occurs along an annular region of the polygon center near the rims. This has important implications for transport of nutrients (such as dissolved organic carbon) and advection of heat towards ice-wedge tops. We also provide a comprehensive investigation of the effect of polygon aspect ratio and anisotropy on drainage timing and patterns, expanding on previously published research. Our results indicate that polygons with large aspect ratios and high anisotropy will have the most distributed drainage, while polygons with large aspect ratios and low anisotropy will have their drainage most focused near their periphery and will drain most slowly. Polygons with small aspect ratios and high anisotropy will drain most quickly. These results, based on parametric investigation of idealized scenarios, provide a baseline for further research considering the geometric and hydraulic complexities of ice-wedge polygons
- …