963 research outputs found

    Multidisciplinary research leading to utilization of extraterrestrial resources Quarterly status report, 1 Jul. - 1 Oct. 1967

    Get PDF
    NASA program of multidisciplinary research on use of extraterrestrial resource

    Multidisciplinary research leading to utilization of extraterrestrial resources Quarterly status report, 1 Jul. - 1 Oct. 1969

    Get PDF
    Surface properties, failure processes, and thermodynamic properties of rock in simulated lunar environment

    Bureau of Mines research on lunar resource utilization

    Get PDF
    Lunar resource utilization progra

    Tensile and pack compressive tests of some sheets of aluminum alloy, 1025 carbon steel, and chromium-nickel steel

    Get PDF
    Tensile and compressive stress-strain curves, stress-deviation curves, and secant modulus-stress curves are given for longitudinal and transverse specimens of 17S-T, 24S-T, and 24S-RT aluminum-alloy sheet in thicknesses from 0.032 to 0.081 inch, 1025 carbon steel sheet in thicknesses of 0.054 and 0.120 inch, and chromium-nickel steel sheet in thicknesses form 0.020 to 0.0275 inch. Significant differences were found between the tensile and the compressive stress-strain curves, and also the corresponding corollary curves; similarly, differences were found between the curves for the longitudinal and transverse directions. These differences are of particular importance in considering the compressive strength of aircraft structures made of thin sheet. They are explored further for the case of compression by giving tangent modulus-stress curves in longitudinal and transverse compression and dimensionless curves of the ratio of tangent modulus to Young's modulus and of the ratio of reduced modulus for a rectangular section to Young's modulus, both plotted against the ratio of stress to secant yield strength

    Electrochromic orbit control for smart-dust devices

    Get PDF
    Recent advances in MEMS (micro electromechanical systems) technology are leading to spacecraft which are the shape and size of computer chips, so-called SpaceChips, or ‘smart dust devices’. These devices can offer highly distributed sensing when used in future swarm applications. However, they currently lack a feasible strategy for active orbit control. This paper proposes an orbit control methodology for future SpaceChip devices which is based on exploiting the effects of solar radiation pressure using electrochromic coatings. The concept presented makes use of the high area-to-mass ratio of these devices, and consequently the large force exerted upon them by solar radiation pressure, to control their orbit evolution by altering their surface optical properties. The orbital evolution of Space Chips due to solar radiation pressure can be represented by a Hamiltonian system, allowing an analytic development of the control methodology. The motion in the orbital element phase space resembles that of a linear oscillator, which is used to formulate a switching control law. Additional perturbations and the effect of eclipses are accounted for by modifying the linearized equations of the secular change in orbital elements around an equilibrium point in the phase space of the problem. Finally, the effectiveness of the method is demonstrated in a test case scenario

    Startup of the High-Intensity Ultracold Neutron Source at the Paul Scherrer Institute

    Full text link
    Ultracold neutrons (UCN) can be stored in suitable bottles and observed for several hundreds of seconds. Therefore UCN can be used to study in detail the fundamental properties of the neutron. A new user facility providing ultracold neutrons for fundamental physics research has been constructed at the Paul Scherrer Institute, the PSI UCN source. Assembly of the facility finished in December 2010 with the first production of ultracold neutrons. Operation approval was received in June 2011. We give an overview of the source and the status at startup.Comment: Proceedings of the International Conference on Exotic Atoms and Related Topics - EXA2011 September 5-9, 2011 Austrian Academy of Sciences, Theatersaal, Sonnenfelsgasse 19, 1010 Wien, Austria 6 pages, 3 figure

    Fission studies with 140 MeV α\bm{\alpha}-Particles

    Full text link
    Binary fission induced by 140 MeV α\alpha-particles has been measured for nat^{\rm nat}Ag, 139^{139}La, 165^{165}Ho and 197^{197}Au targets. The measured quantities are the total kinetic energies, fragment masses, and fission cross sections. The results are compared with other data and systematics. A minimum of the fission probability in the vicinity Z2/A=24Z^2/A=24 is observed.Comment: 4 figures, 2 table
    corecore