8 research outputs found
Offshore oil and gas platforms as stepping stones for expansion of coral communities: a molecular genetic analysis
The northern Gulf of Mexico (GOM) is one of the most productive oil and gas exploration areas in the world, currently containing approximately 3,800 offshore platforms. These platforms serve as artificial reefs in shallow water, which until their introduction was nearly devoid of shallow hard substrata. The question is raised whether this newly available substrate could help expand coral populations in the GOM. In this study, I examined adult scleractinian corals on oil and gas platforms in the northern GOM, in the vicinity of the Flower Garden Banks (FGB; approximately 180 km SE of Galveston, Texas) and attempted to determine the degree of genetic affinity among the natural and platform populations there. Adult coral tissue samples were collected from seven platforms surveyed in the region of the FGB at a depth range of 0-30 m. The three most abundant scleractinian, hermatypic species were sampled: Madracis decactis, Diploria strigosa, and Montastraea cavernosa. Genetic variation was revealed by Amplified Fragment Length Polymorphisms (AFLPs), a DNA-fingerprinting technique based on the polymerase chain reaction (PCR). This tool successfully distinguished between closely related colonies derived from populations on different platforms and on the two Flower Garden Banks. AMOVA analyses indicated that the East and West FGB were homogeneous for Madracis decactis and Diploria strigosa; however, the Montastraea cavernosa populations at the two banks were significantly different. Randomized data sets of two Madracis decactis populations were run with AFLPOP using a minimum log-likelihood difference of zero and one. These analyses determined that a log-likelihood difference of one is a more conservative and more reliable option, and all subsequent analyses were run using this setting. AFLPOP analyses showed that Montastraea cavernosa at the two banks was highly self-contained, indicating a possible high degree of self-seeding with regard to this species. It appears that Madracis decactis, a brooding species, is highly effective at dispersing to neighboring habitats over distances of kms to tens of kms. By comparison, Diploria strigosa and Montastraea cavernosa, both broadcasting species, are not. They may be more effective at larger scale dispersal, but this remains to be demonstrated
Exponential growth, high prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta variant
SARS-CoV-2 infections were rising during early summer 2021 in many countries associated with the Delta variant. We assessed RT-PCR swab-positivity in the REal-time Assessment of Community Transmission-1 (REACT-1) study in England. We observed sustained exponential growth with average doubling time (June-July 2021) of 25 days driven by complete replacement of Alpha variant by Delta, and by high prevalence at younger less-vaccinated ages. Unvaccinated people were three times more likely than double-vaccinated people to test positive. However, after adjusting for age and other variables, vaccine effectiveness for double-vaccinated people was estimated at between ~50% and ~60% during this period in England. Increased social mixing in the presence of Delta had the potential to generate sustained growth in infections, even at high levels of vaccination
The Effect of Vertically Yoked Prisms on Binocular Vision and Accommodation
SIGNIFICANCE Vertically yoked prisms have been used in treatment of binocular vision dysfunction despite minimal supporting evidence. In people with normal binocular vision, the impact on phorias has been assessed but not the impact on accommodation, accommodation vergence interactions, or the horopter. We found that vertically yoked prisms have minor effects during short-term wear in young adults. PURPOSE The purpose of this study was to determine effects of vertically yoked prisms on accommodative response and several binocular vision tasks. METHODS There were 45 participants aged 18 to 24 years. The 23 myopes wore distance-corrected soft contact lenses. In a random arrangement, each person wore spectacles containing planopower lenses with either 8 Î base-up, 4 Î base-up, zero, 4 Î base-down, and 8 Î base-down prisms. Before spectacle wear, baseline measurements of near heterophoria, accommodation response, negative and positive relative accommodations, fusional vergence, and Nonius-horopter spatial perception were taken. Measurements were repeated after a 40-minute wear, spectacles were removed, and tests were performed 20 minutes later. On a 22-participant subset, on a separate occasion, measurements of heterophoria, accommodation response, and relative accommodation were made immediately after spectacles were fitted. RESULTS Most changes relative to baseline were not significant. Where effects occurred, these were nearly all associated with prism presence rather than adaptation. There were significant effects on accommodation response, but these seem to be refraction effects produced by pantoscopic tilt-induced power changes rather than perceptual effects altering accommodation. There were statistically significant effects on negative relative accommodation (P <.01), with zero prism giving more negative relative accommodation than 8 Î base-down prisms. Tendencies were noted for prisms to move horopter limits toward the observer. Effects were small and likely not of clinical relevance. CONCLUSIONS Vertically yoked prisms have minor effects on accommodation and binocular vision, at least during short-term wear in young adults with normal binocular vision.</p
Successful Kinetic Impact into an Asteroid for Planetary Defense.
While no known asteroid poses a threat to Earth for at least the next century, the catalog of near-Earth asteroids is incomplete for objects whose impacts would produce regional devastation1,2. Several approaches have been proposed to potentially prevent an asteroid impact with Earth by deflecting or disrupting an asteroid1-3. A test of kinetic impact technology was identified as the highest priority space mission related to asteroid mitigation1. NASA's Double Asteroid Redirection Test (DART) mission is the first full-scale test of kinetic impact technology. The mission's target asteroid was Dimorphos, the secondary member of the S-type binary near-Earth asteroid (65803) Didymos. This binary asteroid system was chosen to enable ground-based telescopes to quantify the asteroid deflection caused by DART's impact4. While past missions have utilized impactors to investigate the properties of small bodies5,6, those earlier missions were not intended to deflect their targets and did not achieve measurable deflections. Here we report the DART spacecraft's autonomous kinetic impact into Dimorphos and reconstruct the impact event, including the timeline leading to impact, the location and nature of the DART impact site, and the size and shape of Dimorphos. The successful impact of the DART spacecraft with Dimorphos and the resulting change in Dimorphos's orbit7 demonstrates that kinetic impactor technology is a viable technique to potentially defend Earth if necessary
SARS-CoV-2 lineage dynamics in England from September to November 2021: high diversity of Delta sub-lineages and increased transmissibility of AY.4.2
Abstract Background Since the emergence of SARS-CoV-2, evolutionary pressure has driven large increases in the transmissibility of the virus. However, with increasing levels of immunity through vaccination and natural infection the evolutionary pressure will switch towards immune escape. Genomic surveillance in regions of high immunity is crucial in detecting emerging variants that can more successfully navigate the immune landscape. Methods We present phylogenetic relationships and lineage dynamics within England (a country with high levels of immunity), as inferred from a random community sample of individuals who provided a self-administered throat and nose swab for rt-PCR testing as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. During round 14 (9 Septemberâ27 September 2021) and 15 (19 Octoberâ5 November 2021) lineages were determined for 1322 positive individuals, with 27.1% of those which reported their symptom status reporting no symptoms in the previous month. Results We identified 44 unique lineages, all of which were Delta or Delta sub-lineages, and found a reduction in their mutation rate over the study period. The proportion of the Delta sub-lineage AY.4.2 was increasing, with a reproduction number 15% (95% CI 8â23%) greater than the most prevalent lineage, AY.4. Further, AY.4.2 was less associated with the most predictive COVID-19 symptoms (pâ=â0.029) and had a reduced mutation rate (pâ=â0.050). Both AY.4.2 and AY.4 were found to be geographically clustered in September but this was no longer the case by late October/early November, with only the lineage AY.6 exhibiting clustering towards the South of England. Conclusions As SARS-CoV-2 moves towards endemicity and new variants emerge, genomic data obtained from random community samples can augment routine surveillance data without the potential biases introduced due to higher sampling rates of symptomatic individuals. </jats:sec