21 research outputs found

    Validating Animal Models

    Get PDF
    Este artículo responde a un reto reciente: la validez de extrapolar el conocimiento neurobiológico del laboratorio animal a los humanos. Según esta objeción la neurobiología experimental, y por ende la neurociencia, está en crisis porque el conocimiento obtenido en los laboratorios de neurobiología utiliza modelos animales simplificados de las condiciones humanas que difieren de unos laboratorios a otros. Por el contrario, sostengo que mantener una diversidad de protocolos experimentales y de modelos simples está sobradamente justificado. Favorece, en vez de impedir, la validez de la extrapolación de conocimiento neurobiológico. La neurobiología es una disciplina floreciente.; In this paper, I respond to the challenge raised against contemporary experimental neurobiology according to which the field is in a state of crisis because of the multiple experimental protocols employed in different laboratories and strengthening their reliability that presumably preclude the validity of neurobiological knowledge. I provide an alternative account of experimentation in neurobiology which makes sense of its experimental practices. I argue that maintaining a multiplicity of experimental protocols and strengthening their reliability are well justified and they foster rather than preclude the validity of neurobiological knowledge. Thus, their presence indicates thriving rather than crisis of experimental neurobiology

    The unexplored diversity of pleolipoviruses: the surprising case of two viruses with identical major structural modules

    Get PDF
    Extremely halophilic Archaea are the only known hosts for pleolipoviruses which are pleomorphic non-lytic viruses resembling cellular membrane vesicles. Recently, pleolipoviruses have been acknowledged by the International Committee on Taxonomy of Viruses (ICTV) as the first virus family that contains related viruses with different DNA genomes. Genomic diversity of pleolipoviruses includes single-stranded and double-stranded DNA molecules and their combinations as linear or circular molecules. To date, only eight viruses belong to the family Pleolipoviridae. In order to obtain more information about the diversity of pleolipoviruses, further isolates are needed. Here we describe the characterization of a new halophilic virus isolate, Haloarcula hispanica pleomorphic virus 4 (HHPV4). All pleolipoviruses and related proviruses contain a conserved core of approximately five genes designating this virus family, but the sequence similarity among different isolates is low. We demonstrate that over half of HHPV4 genome is identical to the genome of pleomorphic virus HHPV3. The genomic regions encoding known virion components are identical between the two viruses, but HHPV4 includes unique genetic elements, e.g., a putative integrase gene. The co-evolution of these two viruses demonstrates the presence of high recombination frequency in halophilic microbiota and can provide new insights considering links between viruses, membrane vesicles, and plasmids.Peer reviewe

    Haloarchaeal virus morphotypes

    Get PDF
    Hypersaline waters and salt crystals are known to contain high numbers of haloarchaeal cells and their viruses. Both culture-dependent and culture-independent studies indicate that these viruses represent a world-wide distributed reservoir of orphan genes and possibly novel virion morphotypes. To date, 90 viruses have been described for halophilic archaeal hosts, all belonging to the Halobacteriaceae family. This number is higher than that described for the members of any other archaeal family, but still very low compared to the viruses of bacteria and eukaryotes. The known haloarchaeal viruses represent icosahedral tailed, icosahedral internal membrane-containing, pleomorphic, and spindle-shaped virion morphotypes. This morphotype distribution is low, especially when compared to the astronomical number (>10(31)) of viruses on Earth. This strongly suggests that only certain protein folds are capable of making a functional virion. Viruses infecting cells belonging to any of the three domains of life are known to share similar major capsid protein folds which can be used to classify viruses into structure-based lineages. The latest observation supporting this proposal comes from the studies of icosahedral tailed haloarchaeal viruses which are the most abundant virus isolates from hypersaline environments. These viruses were shown to have the same major capsid protein fold (HK97-fold) with tailed bacteriophages belonging to the order Caudovirales and with eukaryotic herpes viruses. This proposes that these viruses have a common origin dating back to ancient times. Here we summarize the current knowledge of haloarchaeal viruses from the perspective of virus morphotypes. (C) 2015 Elsevier B.V. and Societe Francaise de Biochimie et Biologie Moleculaire (SFBBM). All rights reserved.Peer reviewe

    Extremely halophilic pleomorphic archaeal virus HRPV9 extends the diversity of pleolipoviruses with integrases

    Get PDF
    Certain pleomorphic archaeal viruses are highly infectious even at saturated salt. These viruses belong to the genus Betapleolipovirus of the recently described archaeal virus family Pleolipoviridae. Pleolipoviruses comprise single-stranded or double-stranded, circular or linear DNA genomes that share countless homologues among various archaeal genetic elements. Here we describe a new extremely halophilic betapleolipovirus, Halorubrum pleomorphic virus 9 (HRPV9), which has an integrase gene. We also identified new genes encoding minor pleolipoviral structural proteins. The studies on HRPV9 enhance our knowledge on pleolipoviruses, especially their reciprocal relatedness and relation to certain archaeal plasmids, proviruses and membrane vesicles. (C) 2018 The Authors. Published by Elsevier Masson SAS on behalf of Institut Pasteur.Peer reviewe

    Archaeal viruses multiply: temporal screening in a solar saltern

    Get PDF
    Hypersaline environments around the world are dominated by archaea and their viruses. To date, very little is known about these viruses and their interaction with the host strains when compared to bacterial and eukaryotic viruses. We performed the first culture-dependent temporal screening of haloarchaeal viruses and their hosts in the saltern of Samut Sakhon, Thailand, during two subsequent years (2009, 2010). Altogether we obtained 36 haloarchaeal virus isolates and 36 archaeal strains, significantly increasing the number of known archaeal virus isolates. Interestingly, the morphological distribution of our temporal isolates (head-tailed, pleomorphic, and icosahedral membrane-containing viruses) was similar to the outcome of our previous spatial survey supporting the observations of a global resemblance of halophilic microorganisms and their viruses. Myoviruses represented the most abundant virus morphotype with strikingly broad host ranges. The other viral morphotypes (siphoviruses, as well as pleomorphic and icosahedral internal membrane-containing viruses) were more host-specific. We also identified a group of Halorubrum strains highly susceptible to numerous different viruses (up to 26). This high virus sensitivity, the abundance of broad host range viruses, and the maintenance of infectivity over a period of one year suggest constant interplay of halophilic microorganisms and their viruses within an extreme environment.Peer reviewe

    Ice nucleation by viruses and their potential for cloud glaciation

    Get PDF
    In order to effectively predict the formation of ice in clouds we need to know which subsets of aerosol particles are effective at nucleating ice, how they are distributed and where they are from. A large proportion of ice-nucleating particles (INPs) in many locations are likely of biological origin, and some INPs are extremely small, being just tens of nanometres in size. The identity and sources of such INPs are not well characterized. Here, we show that several different types of virus particles can nucleate ice, with up to about 1 in 20 million virus particles able to nucleate ice at -20 degrees C. In terms of the impact on cloud glaciation, the ice-nucleating ability (the fraction which are ice nucleation active as a function of temperature) taken together with typical virus particle concentrations in the atmosphere leads to the conclusion that virus particles make a minor contribution to the atmospheric ice-nucleating particle population in the terrestrial-influenced atmosphere. However, they cannot be ruled out as being important in the remote marine atmosphere. It is striking that virus particles have an ice-nucleating activity, and further work should be done to explore other types of viruses for both their ice-nucleating potential and to understand the mechanism by which viruses nucleate ice.Peer reviewe

    Measurement report : Introduction to the HyICE-2018 campaign for measurements of ice-nucleating particles and instrument inter-comparison in the Hyytiala boreal forest

    Get PDF
    The formation of ice particles in Earth's atmosphere strongly influences the dynamics and optical properties of clouds and their impacts on the climate system. Ice formation in clouds is often triggered heterogeneously by ice-nucleating particles (INPs) that represent a very low number of particles in the atmosphere. To date, many sources of INPs, such as mineral and soil dust, have been investigated and identified in the low and mid latitudes. Although less is known about the sources of ice nucleation at high latitudes, efforts have been made to identify the sources of INPs in the Arctic and boreal environments. In this study, we investigate the INP emission potential from high-latitude boreal forests in the mixed-phase cloud regime. We introduce the HyICE-2018 measurement campaign conducted in the boreal forest of Hyytiala, Finland, between February and June 2018. The campaign utilized the infrastructure of the Station for Measuring Ecosystem-Atmosphere Relations (SMEAR) II, with additional INP instruments, including the Portable Ice Nucleation Chamber I and II (PINC and PINCii), the SPectrometer for Ice Nuclei (SPIN), the Portable Ice Nucleation Experiment (PINE), the Ice Nucleation SpEctrometer of the Karlsruhe Institute of Technology (INSEKT) and the Microlitre Nucleation by Immersed Particle Instrument (mu L-NIPI), used to quantify the INP concentrations and sources in the boreal environment. In this contribution, we describe the measurement infrastructure and operating procedures during HyICE-2018, and we report results from specific time periods where INP instruments were run in parallel for inter-comparison purposes. Our results show that the suite of instruments deployed during HyICE-2018 reports consistent results and therefore lays the foundation for forthcoming results to be considered holistically. In addition, we compare measured INP concentrations to INP parameterizations, and we observe good agreement with the Tobo et al. (2013) parameterization developed from measurements conducted in a ponderosa pine forest ecosystem in Colorado, USA.Peer reviewe

    Measurement report : Introduction to the HyICE-2018 campaign for measurements of ice-nucleating particles and instrument inter-comparison in the Hyytiala boreal forest

    Get PDF
    The formation of ice particles in Earth's atmosphere strongly influences the dynamics and optical properties of clouds and their impacts on the climate system. Ice formation in clouds is often triggered heterogeneously by ice-nucleating particles (INPs) that represent a very low number of particles in the atmosphere. To date, many sources of INPs, such as mineral and soil dust, have been investigated and identified in the low and mid latitudes. Although less is known about the sources of ice nucleation at high latitudes, efforts have been made to identify the sources of INPs in the Arctic and boreal environments. In this study, we investigate the INP emission potential from high-latitude boreal forests in the mixed-phase cloud regime. We introduce the HyICE-2018 measurement campaign conducted in the boreal forest of Hyytiala, Finland, between February and June 2018. The campaign utilized the infrastructure of the Station for Measuring Ecosystem-Atmosphere Relations (SMEAR) II, with additional INP instruments, including the Portable Ice Nucleation Chamber I and II (PINC and PINCii), the SPectrometer for Ice Nuclei (SPIN), the Portable Ice Nucleation Experiment (PINE), the Ice Nucleation SpEctrometer of the Karlsruhe Institute of Technology (INSEKT) and the Microlitre Nucleation by Immersed Particle Instrument (mu L-NIPI), used to quantify the INP concentrations and sources in the boreal environment. In this contribution, we describe the measurement infrastructure and operating procedures during HyICE-2018, and we report results from specific time periods where INP instruments were run in parallel for inter-comparison purposes. Our results show that the suite of instruments deployed during HyICE-2018 reports consistent results and therefore lays the foundation for forthcoming results to be considered holistically. In addition, we compare measured INP concentrations to INP parameterizations, and we observe good agreement with the Tobo et al. (2013) parameterization developed from measurements conducted in a ponderosa pine forest ecosystem in Colorado, USA.Peer reviewe

    Validating Animal Models

    No full text
    Este artículo responde a un reto reciente: la validez de extrapolar el conocimiento neurobiológico del laboratorio animal a los humanos. Según esta objeción la neurobiología experimental, y por ende la neurociencia, está en crisis porque el conocimiento obtenido en los laboratorios de neurobiología utiliza modelos animales simplificados de las condiciones humanas que difieren de unos laboratorios a otros. Por el contrario, sostengo que mantener una diversidad de protocolos experimentales y de modelos simples está sobradamente justificado. Favorece, en vez de impedir, la validez de la extrapolación de conocimiento neurobiológico. La neurobiología es una disciplina floreciente.; In this paper, I respond to the challenge raised against contemporary experimental neurobiology according to which the field is in a state of crisis because of the multiple experimental protocols employed in different laboratories and strengthening their reliability that presumably preclude the validity of neurobiological knowledge. I provide an alternative account of experimentation in neurobiology which makes sense of its experimental practices. I argue that maintaining a multiplicity of experimental protocols and strengthening their reliability are well justified and they foster rather than preclude the validity of neurobiological knowledge. Thus, their presence indicates thriving rather than crisis of experimental neurobiology
    corecore