239 research outputs found

    On discrete q-ultraspherical polynomials and their duals

    Get PDF
    We show that a confluent case of the big q-Jacobi polynomials P_n(x;a,b,c;q), which corresponds to a=b=-c, leads to a discrete orthogonality relation for imaginary values of the parameter a (outside of its commonly known domain 0<a< q^{-1}). Since P_n(x;q^\alpha, q^\alpha, -q^\alpha; q) tend to Gegenbauer (or ultraspherical) polynomials in the limit as q->1, this family represents yet another q-extension of these classical polynomials, different from the continuous q-ultraspherical polynomials of Rogers. The dual family with respect to the polynomials P_n(x;a,a,-a;q) (i.e., the dual discrete q-ultraspherical polynomials) corresponds to the indeterminate moment problem, that is, these polynomials have infinitely many orthogonality relations. We find orthogonality relations for these polynomials, which have not been considered before. In particular, extremal orthogonality measures for these polynomials are derived.Comment: 14 page

    Continuous vs. discrete models for the quantum harmonic oscillator and the hydrogen atom

    Full text link
    The Kravchuk and Meixner polynomials of discrete variable are introduced for the discrete models of the harmonic oscillator and hydrogen atom. Starting from Rodrigues formula we construct raising and lowering operators, commutation and anticommutation relations. The physical properties of discrete models are figured out through the equivalence with the continuous models obtained by limit process.Comment: LaTeX, 14 pages (late submission

    A finite oscillator model related to sl(2|1)

    Get PDF
    We investigate a new model for the finite one-dimensional quantum oscillator based upon the Lie superalgebra sl(2|1). In this setting, it is natural to present the position and momentum operators of the oscillator as odd elements of the Lie superalgebra. The model involves a parameter p (0<p<1) and an integer representation label j. In the (2j+1)-dimensional representations W_j of sl(2|1), the Hamiltonian has the usual equidistant spectrum. The spectrum of the position operator is discrete and turns out to be of the form ±k\pm\sqrt{k}, where k=0,1,...,j. We construct the discrete position wave functions, which are given in terms of certain Krawtchouk polynomials. These wave functions have appealing properties, as can already be seen from their plots. The model is sufficiently simple, in the sense that the corresponding discrete Fourier transform (relating position wave functions to momentum wave functions) can be constructed explicitly

    Bulk spectral function sum rule in QCD-like theories with a holographic dual

    Full text link
    We derive the sum rule for the spectral function of the stress-energy tensor in the bulk (uniform dilatation) channel in a general class of strongly coupled field theories. This class includes theories holographically dual to a theory of gravity coupled to a single scalar field, representing the operator of the scale anomaly. In the limit when the operator becomes marginal, the sum rule coincides with that in QCD. Using the holographic model, we verify explicitly the cancellation between large and small frequency contributions to the spectral integral required to satisfy the sum rule in such QCD-like theories.Comment: 16 pages, 2 figure

    On q-orthogonal polynomials, dual to little and big q-Jacobi polynomials

    Get PDF
    This paper studies properties of q-Jacobi polynomials and their duals by means of operators of the discrete series representations for the quantum algebra U_q(su_{1,1}). Spectrum and eigenfunctions of these operators are found explicitly. These eigenfunctions, when normalized, form an orthogonal basis in the representation space. The initial U_q(su_{1,1})-basis and the bases of these eigenfunctions are interconnected by matrices, whose entries are expressed in terms of little and big q-Jacobi polynomials. The orthogonality by rows in these unitary connection matrices leads to the orthogonality relations for little and big q-Jacobi polynomials. The orthogonality by columns in the connection matrices leads to an explicit form of orthogonality relations on the countable set of points for {}_3\phi_2 and {}_3\phi_1 polynomials, which are dual to big and little q-Jacobi polynomials, respectively. The orthogonality measure for the dual little q-Jacobi polynomials proves to be extremal, whereas the measure for the dual big q-Jacobi polynomials is not extremal.Comment: 26 pages, LaTeX, the exposition is slightly improved and some additional references have been adde

    A superintegrable finite oscillator in two dimensions with SU(2) symmetry

    Full text link
    A superintegrable finite model of the quantum isotropic oscillator in two dimensions is introduced. It is defined on a uniform lattice of triangular shape. The constants of the motion for the model form an SU(2) symmetry algebra. It is found that the dynamical difference eigenvalue equation can be written in terms of creation and annihilation operators. The wavefunctions of the Hamiltonian are expressed in terms of two known families of bivariate Krawtchouk polynomials; those of Rahman and those of Tratnik. These polynomials form bases for SU(2) irreducible representations. It is further shown that the pair of eigenvalue equations for each of these families are related to each other by an SU(2) automorphism. A finite model of the anisotropic oscillator that has wavefunctions expressed in terms of the same Rahman polynomials is also introduced. In the continuum limit, when the number of grid points goes to infinity, standard two-dimensional harmonic oscillators are obtained. The analysis provides the NN\rightarrow \infty limit of the bivariate Krawtchouk polynomials as a product of one-variable Hermite polynomials

    Jacobi Matrix Pair and Dual Alternative q-Charlier Polynomials

    No full text
    By using two operators representable by Jacobi matrices, we introduce a family of q-orthogonal polynomials, which turn out to be dual with respect to alternative q-Charlier polynomials. A discrete orthogonality relation and the completeness property for these polynomials are established.3a допомогою двох операторів, зображуваних матрицями Якобі, введено сім'ю q-ортогональних многочленів, що є дуальними по відношенню до альтернативних q-многочленів Шарльє. Для цих многочленів отримано дискретне співвідношення ортогональності та властивість повноти

    More on the q-oscillator algebra and q-orthogonal polynomials

    Full text link
    Properties of certain qq-orthogonal polynomials are connected to the qq-oscillator algebra. The Wall and qq-Laguerre polynomials are shown to arise as matrix elements of qq-exponentials of the generators in a representation of this algebra. A realization is presented where the continuous qq-Hermite polynomials form a basis of the representation space. Various identities are interpreted within this model. In particular, the connection formula between the continuous big qq-Hermite polynomials and the continuous qq-Hermite polynomials is thus obtained, and two generating functions for these last polynomials are algebraically derived
    corecore