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Abstract

A special case of the bigq-Jacobi polynomialsPn(x;a, b, c;q), which corresponds toa = b = −c,
is shown to satisfy a discrete orthogonality relation for imaginary values of the parametera (outside
of its commonly known domain 0< a < q−1). SincePn(x;qα, qα,−qα;q) tend to Gegenbauer (o
ultraspherical) polynomials in the limit asq → 1, this family represents anotherq-extension of these
classical polynomials, different from the continuousq-ultraspherical polynomials of Rogers. For
dual family with respect to the polynomialsPn(x;a, a,−a;q) (i.e., for dual discreteq-ultraspherical
polynomials) we also find new orthogonality relations with extremal measures.
 2004 Elsevier Inc. All rights reserved.
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1. Main results

It is well known that the bigq-Jacobi polynomialsPn(x;a, b, c;q) are orthogonal for
values of the parameters in the intervals 0< a,b < q−1, c < 0. We show that these poly
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nomials are also orthogonal outside of these intervals in a special case whena = b = −c.
Since the polynomialsPn(x;qα, qα,−qα|q) tend to ultraspherical polynomials whe
q → 1, it is natural to call themdiscrete q-ultraspherical polynomials (because thei
orthogonality measure is discrete, contrary to the orthogonality measure for conti
q-ultraspherical polynomials of Rogers). We give explicitly an orthogonality relation
Pn(x;a, a,−a|q) whena becomes imaginary. Orthogonality relations for dualq-Jacobi
polynomials for the same special cases are also given.

Throughout the sequel we always assume thatq is a fixed positive number such th
q < 1. We use (without additional explanation) notations of the theory ofq-special func-
tions (see, for example, [5]).

If one introduces the notation

C(a2)
n (x;q) := Pn(x;a, a,−a;q) = 3φ2(q

−n, a2qn+1, x;aq,−aq;q, q), (1)

then an orthogonality relation forC(a)
n (x;q), which follows from that for the bigq-Jacobi

polynomials (see formula (7.3.12) in [5]), holds for positive values ofa. We prove that the
polynomialsC

(a)
n (x;q) are orthogonal also for imaginary values ofa andx. In order to

dispense with imaginary numbers in this case, let us denote

C̃(a)
n (x;q) := (−i)nC(−a)

n (ix;q) = (−i)n3φ2

(
q−n,−aqn+1, ix

i
√

a q,−i
√

a q

∣∣∣∣q, q

)
, (2)

wherex is real and 0< a < ∞. These polynomials satisfy the recurrence relation

xC̃(a)
n (x;q) = anC̃

(a)
n+1(x;q) + cnC̃

(a)
n−1(x;q), (3)

wherean = (1 + aqn+1)/(1 + aq2n+1), cn = an − 1, andC̃
(a)
0 (x;q) ≡ 1. Observe tha

an � 1 and, hence, coefficients in (3) satisfy the conditionsancn+1 > 0 of Favard’s char-
acterization theorem forn = 0,1,2, . . . (see, for example, [5]). This means that the
polynomials are orthogonal with respect to a positive measure. We prove that the or
nality relation for them is

∞∑
s=0

∑
ε=±1

(−aq2;q2)sq
s

(q2;q2)s
C̃(a)

n (ε
√

a qs+1;q)C̃
(a)

n′ (ε
√

a qs+1;q)

= (−aq3;q2)∞
(q;q2)∞

(1+ aq)an

(1+ aq2n+1)

(q;q)n

(−aq;q)n
qn(n+3)/2δnn′ . (4)

Since in the limit asq → 1 the polynomials (1) and (2) tend to Gegenbauer polynom
they representdiscrete q-ultraspherical polynomials.

Note that the situation when along with orthogonal polynomialspn(x), depending on
some parameters, the set of polynomials(−i)npn(ix) is also orthogonal, but for othe
values of parameters, is known (see, for example, [1,4,6]). The detailed discussion
thogonality property of Jacobi polynomials can be found in [4]. Contrary to the situ
in [1,4,6], in our case we have orthogonality relations for the whole set of polynom
C̃

(a)
n (x;q), n = 0,1,2, . . . .

In [2] we have introduced the polynomialsDn(µ(x;a);a, b, c|q), µ(x;a) := q−x +
abqx+1, dual to the bigq-Jacobi polynomialsPn(x;a, b, c|q). If we seta = b = −c in

these polynomials, this leads to the polynomials
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also

l with

nd,
e next
D(a2)
n

(
µ(x;a2)|q) := Dn

(
µ(x;a2);a, a,−a|q)

= 3φ2

(
q−x, a2qx+1, q−n

aq,−aq

∣∣∣∣q,−qn+1
)

(5)

in µ(x;a2) = q−x + a2qx+1. They correspond to indeterminate moment problem. We
proved that the polynomials (5) satisfy the following orthogonality relations:

∞∑
k=0

(1− aq4k+1)(aq;q)2k

(1− aq)(q;q)2k

qk(2k−1)D(a)
n

(
µ(2k)|q)

D
(a)

n′
(
µ(2k)|q)

= β
(q2;q2)nq

−n

(aq2;q2)n
δnn′ , (6)

∞∑
k=0

(1− aq4k+3)(aq;q)2k+1

(1− aq)(q;q)2k+1
qk(2k+1)D(a)

n

(
µ(2k + 1)|q)

D
(a)

n′
(
µ(2k + 1)|q)

= β
(q2;q2)nq

−n

(aq2;q2)n
δnn′ , (7)

whereβ = (aq3;q2)∞/(q;q2)∞, µ(2k) ≡ µ(2k;a), µ(2k + 1) ≡ µ(2k + 1;a) and 0<

a < q−2. The orthogonality measures here are extremal.

For the polynomialsD(a2)
n (µ(x;a2)|q) with imaginarya it is natural to define

D̃(a2)
n

(
µ(x;−a2)|q) := Dn

(
µ(x;−a2); ia, ia,−ia|q)

= 3φ2

(
q−x,−a2qx+1, q−n

iaq,−iaq

∣∣∣∣q,−qn+1
)

. (8)

These polynomials satisfy the recurrence relation

(q−x − aqx+1)D̃(a)
n

(
µ(x;−a)|q)

= −q−2n−1(1+ aq2n+2)D̃
(a)
n+1

(
µ(x;−a)|q)

+ q−2n−1(1+ q)D̃(a)
n

(
µ(x;−a)|q) − q−2n(1− q2n)D̃

(a)
n−1

(
µ(x;−a)|q)

.

It is obvious from this relation that̃D(a)
n (µ(x;−a)|q) are real forx ∈ R anda > 0. For

a > 0 they satisfy the conditions of Favard’s theorem and, therefore, are orthogona
respect to a positive measure.

The polynomialsD̃(a)
n (µ(x;a)|q) correspond to indeterminate moment problem a

therefore, they have infinitely many positive orthogonality measures. We prove in th
section that they satisfy the orthogonality relations

∞∑
k=0

(1+aq4k+1)(−aq;q)2k

(1+ aq)(q;q)2k

qk(2k−1)D̃(a)
n

(
µ(2k)|q)

D̃
(a)

n′
(
µ(2k)|q)

(q2;q2)nq
−n
= γ
(−aq2;q2)n

δnn′ , (9)
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n, we

is to

(13).
[5]
∞∑
k=0

(1+ aq4k+3)(−aq;q)2k+1

(1+ aq)(q;q)2k+1
qk(2k+1)D̃(a)

n

(
µ(2k + 1)|q)

D̃
(a)

n′
(
µ(2k + 1)|q)

= γ
(q2;q2)nq

−n

(−aq2;q2)n
δnn′ , (10)

whereγ = (−aq3;q2)∞/(q;q2)∞, µ(2k) ≡ µ(2k;−a), µ(2k + 1) ≡ µ(2k + 1;−a) and
a > 0. The corresponding orthogonality measures are extremal.

The polynomials (5) and (8) are dual to the polynomials (1) and (2). For this reaso
call themdual discrete q-ultraspherical polynomials.

2. Proofs

The main idea of proving the orthogonality relations (4), (6), (7), (9) and (10)
establish the connection between the polynomials (2) and the littleq-Jacobi polynomials

pn(x;a, b|q) := 2φ1(q
−n, abqn+1;aq;q, qx), (11)

as well as between the polynomials (5), (8) and the dual littleq-Jacobi polynomials

dn

(
µ(x;ab);a, b|q) := 3φ1(q

−x, abqx+1, q−n;bq;q, qn/a), (12)

considered in [2].

Proposition 1. The following expressions for the discrete q-ultraspherical polynomials (2)
hold:

C̃
(a)
2k (x;q) = (q;q2)k(−a)k

(−aq2;q2)k
qk(k+1)pk(x

2/aq2;q−1,−a|q2), (13)

C̃
(a)
2k+1(x;q) = (q3;q2)k(−a)k

(−aq2;q2)k
qk(k+1)xpk(x

2/aq2;q,−a|q2), (14)

where pk(y;a, b|q) are the little q-Jacobi polynomials (11).

Proof. We apply Singh’s quadratic transformation (3.10.13) from [5] for a terminating3φ2

series to the expression in (2) for polynomialsC̃
(a)
2k (x;q). This yields

C̃
(a)
2k (x;q) = (−1)k3φ2(q

−2k,−aq2k+1,−x2;−aq2,0;q2, q2).

Now apply to this basic hypergeometric series3φ2 the transformation formula (III.7) from
Appendix III in [5] in order to get

C̃
(a)
2k (x;q) = (q;q2)k(−a)k

(−aq2;q2)k
qk(k+1)

2φ1(q
−2k,−aq2k+1;q;q2, x2/a).

Comparing this formula with the expression for the polynomials (11), one arrives at
One can prove (14) by induction with the aid of formula (III.7) from Appendix III in

and the recurrence relation (3). Let us show first that
C̃
(a)
2k−1(x;q) = (−1)k−1x3φ2(q

−2(k−1),−aq2k+1,−x2;−aq2,0;q2, q2) (15)
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in

dratic

16)

latter
a-

for
for k = 1,2,3, . . . . Fork = 1,2 this formula is an immediate consequence of the recurr
relation (3). As the next step we evaluate a suma−1

2k xC̃
(a)
2k (x;q) − (1− a−1

2k )C̃
(a)
2k−1(x;q).

By the recurrence relation (3) this sum should be equal toC̃
(a)
2k+1(x;q). This is the case

because it is equal to

x

{
a−1

2k 3φ2

(
q−2k,−aq2k+1,−x2

−aq2,0

∣∣∣∣q2, q2
)

+ (
1− a−1

2k

)
3φ2

(
q−2(k−1),−aq2k+1,−x2

−aq2,0

∣∣∣∣q2, q2
)}

= x3φ2

(
q−2k,−aq2k+3,−x2

−aq2,0

∣∣∣∣q2, q2
)

, (16)

multiplied by(−1)k . The second line in (16) follows from the readily verified identity

a−1
2k (q−2k;q2)m + (

1− a−1
2k

)
(q−2(k−1);q2)m = 1+ aq2(k+m)+1

1+ aq2k+1
(q−2k;q2)m.

The right side of (16) does coincide with̃C(a)
2k+1(x;q), defined by the same expression (1

with k → k + 1. Thus, it remains only to apply formula (III.7) from Appendix III in [5]
order to arrive at (14). Proposition is proved.�
Remark 1. Observe that in the course of proving formula (14), we established the qua
transformation

3φ2

(
q−2k−1, αq2k+2, y√

α q,−√
α q

∣∣∣∣q, q

)
= y3φ2

(
q−2k, αq2k+3, y2

αq2,0

∣∣∣∣q2, q2
)

(17)

for the terminating basic hypergeometric polynomials3φ2 with k = 0,1,2, . . . . The left
side in (17) defines (up to a simple multiplicative factor) the polynomialsC̃

(a)
2k+1(x;q)

by (2) (whenα = −a andy = ix) , whereas the right side follows from the expression (
for the same polynomials.

Remark 2. By using the interrelation (2) between the polynomialsC̃
(a)
n (x;q) and

C
(a)
n (x;q), it is easy to write down an analogue of the relations (13) and (14) for the

polynomials. In the limit asq → 1 these relations go over to the well-known transform
tions

C
(λ)
2n (y) = (λ)n

(1
2)n

P
(λ−1/2,−1/2)
n (2y2 − 1),

C
(λ)
2n+1(y) = (λ)n+1

(1
2)n+1

yP
(λ−1/2,1/2)
n (2y2 − 1).

Writing down the orthogonality relation (7.3.3) in [5] for the littleq-Jacobi polynomials
pk(x

2/aq2;q−1,−a|q2) and using the relation (13), one finds an orthogonality relation
the set of polynomials̃C(a)

2k (x;q), k = 0,1,2, . . . , with a > 0:

∞∑
dsC̃

(a)
(
√

a qs+1;q)C̃
(a)

′ (
√

a qs+1;q)
s=0
2k 2k
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-

i-

from

le

e

= (−aq3;q2)∞
(q;q2)∞

(1+ aq)a2k

(1+ aq4k+1)

(q;q)2k

(−aq;q)2k

qk(2k+3)δkk′ ,

whereds = (−aq2;q2)sq
s/(q2;q2)s . Consequently,the family of polynomials C̃

(a)
2k (x;q),

k = 0,1,2, . . . , is orthogonal on the set of points
√

a qs+1, s = 0,1,2, . . . .

Similarly, using formula (14) and the orthogonality relation for the littleq-Jacobi poly-
nomialspk(x

2/aq2;q,−a|q2), we find an orthogonality relation

∞∑
s=0

dsC̃
(a)
2k+1(

√
a qs+1;q)C̃

(a)

2k′+1(
√

a qs+1;q)

= (−aq3;q2)∞
(q;q2)∞

(1+ aq)a2k+1

(1+ aq4k+3)

(q;q)2k+1

(−aq;q)2k+1
q(k+2)(2k+1)δkk′

for the set of polynomials̃C(a)
2k+1(x;q), k = 0,1,2, . . . , with a > 0, whereds is the same

as before. We see from this relation thatthe polynomials C̃
(a)
2k+1(x;q), k = 0,1,2, . . . , are

orthogonal on the same set of points
√

a qs+1, s = 0,1,2, . . . .

However, the polynomials̃C(a)
2k (x;q), k = 0,1,2, . . . , are not orthogonal to the polyno

mials C̃
(a)
2k+1(x;q), k = 0,1,2, . . . , on this set of points

√
a qs+1, s = 0,1,2, . . . . In order

to prove that the polynomials̃C(a)
2k (x;q), k = 0,1,2, . . . , are orthogonal to the polynom

als C̃
(a)
2k+1(x;q), k = 0,1,2, . . . , one has to consider them on the set of points±√

a qs+1,
s = 0,1,2, . . . . Since the polynomials from the first set are even and the polynomials
the second set are odd, then

∞∑
s=0

dsC̃
(a)
2k (

√
a qs+1;q)C̃

(a)

2k′+1(
√

a qs+1;q)

+
∞∑

s=0

dsC̃
(a)
2k (−√

a qs+1;q)C̃
(a)

2k′+1(−
√

a qs+1;q) = 0.

This gives the mutual orthogonality of the polynomialsC̃
(a)
2k (x;q), k = 0,1,2, . . . , to the

polynomialsC̃
(a)
2k+1(x;q), k = 0,1,2, . . . . Then the orthogonality relation for the who

set of polynomialsC̃(a)
n (x;q), n = 0,1,2, . . . , can be written in the form (4). Thus, th

orthogonality relation (4) is proved.

Proposition 2. The following expressions for the dual discrete q-ultraspherical polynomi-
als (5) hold:

D(a)
n

(
µ(2k;a)|q) = dn

(
µ(k;q−1a);q−1, a|q2)

= 3φ1

(
q−2k, aq2k+1, q−2n

aq2

∣∣∣∣q2, q2n+1
)

, (18)

D(a)
n

(
µ(2k + 1;a)|q) = qndn

(
µ(k;qa);q, a|q2)

n

(
q−2k, aq2k+3, q−2n

∣∣∣ 2 2n−1
)

= q 3φ1
aq2 ∣q , q , (19)
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n the

1)

-
hem.
where k are nonnegative integers and dn(µ(x;bc);b, c|q) are polynomials (12).

Proof. Applying to the right side of (5) the formula (III.13) from Appendix III in [5
and then Singh’s quadratic relation (3.10.13) of [5] for terminating3φ2 series, after som
transformations one obtains

D(a2)
n

(
µ(2k;a2)|q) = a−2kq−k(2k+1)

3φ2

(
q−2k, a2q2k+1, a2q2n+2

a2q2,0

∣∣∣∣q2, q2
)

.

Now apply the relation

3φ2

(
q−n,α,β

γ,0

∣∣∣∣q, q

)
= (γ /α;q)n

(γ ;q)n
2φ1

(
q−n,α

αq1−n/γ

∣∣∣∣q,βq/γ

)
,

which follows from formula (III.7) of Appendix III in [5], in order to get

D(a2)
n

(
µ(2k;a2)|q) = (q−2k+1;q2)k

(a2q2;q2)k
2φ1

(
q−2k, a2q2k+1

q

∣∣∣∣q2, q2n+2
)

.

Using the formula (III.8) from [5], one arrives at the expression forD
(a2)
n (µ(2k;a2)|q)

in terms of the basic hypergeometric function from (18), coinciding withdn(µ(k;q−1a2);
q−1, a2|q2). The formula (19) is proved in the same way by using relation (17). Propos
is proved. �

For the polynomialsD̃(a)
n (µ(m;−a)|q) with nonnegative integersm, we have the ex

pressions

D̃(a)
n

(
µ(2k;−a)|q) = dn

(
µ(k;−q−1a);q−1,−a|q2)

= 3φ1

(
q−2k,−aq2k+1q−2n

−aq2

∣∣∣∣q2, q2n+1
)

, (20)

D̃(a)
n

(
µ(2k+1;−a)|q) = qndn

(
µ(k;−qa);q,−a|q2)

= qn
3φ1

(
q−2k,−aq2k+3, q−2n

−aq2

∣∣∣∣q2, q2n−1
)

. (21)

Now the orthogonality relations of Section 1 for the polynomialsD
(a)
n (µ(x;a)|q) and

D̃
(a)
n (µ(x;−a)|q) are proved by means of formulas (18)–(21) in the same way as i

case of polynomials̃C(a)
n (x;q). The corresponding orthogonality measures are extremal

since they are extremal for the dual littleq-Jacobi polynomials from formulas (18)–(2
(see [2]).

3. Relation to Berg–Ismail polynomials

Since the polynomialsD(a)
n (µ(x;a)|q) andD̃

(a)
n (µ(x;−a)|q) correspond to the inde

terminate moment problems, there exist infinitely many orthogonality relations for t

Let us derive some set of these relations forD̃

(a)
n (µ(x;−a)|q), by using their relation to
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r) of

s
er
the polynomials (5.18) of Berg and Ismail [3]. These polynomials are (up to a facto
the form

un

(
(eξ − e−ξ )/2; t1, t2|q

) = 3φ1

(
qeξ /t1,−qe−ξ /t1, q

−n

−q2/t1t2

∣∣∣∣q, qnt1/t2

)
(22)

and orthogonality relations, parametrized by a numberd , q � d < 1, are given by

∞∑
n=−∞

(−t1q
−n/d, t1q

nd,−t2q
−n/d, t2q

nd;q)∞
(−t1t2/q;q)∞

d4nqn(2n−1)(1+ d2q2n)

(−d2;q)∞(−q/d2;q)∞(q;q)∞

× ur

(
(d−1q−n − dqn)/2; t1, t2

)
us

(
(d−1q−n − dqn)/2; t1, t2

)
= (q;q)r(t1/t2)

r

(−q2/t1t2;q)rqr
δrs . (23)

The orthogonality measure here is positive fort1, t2 ∈ R and t1t2 > 0. It is not known
whether these measures are extremal or not.

In order to use this orthogonality relation for the polynomialsD̃
(a)
n (µ(x;−a)|q), let us

consider the transformation formula

3φ2

(
q−2k,−a2q2k+1, q−n

iaq,−iaq

∣∣∣∣q,−qn+1
)

= 3φ1

(
q−2k,−a2q2k+1, q−2n

−a2q2

∣∣∣∣q2, q2n+1
)

, (24)

which is obtained by equating two expressions (8) and (20) forD̃
(a)
n (µ(2k;−a)|q). This

formula is true for any nonnegative integer values ofk. The relation (24) is still valid if
one replaces numerator parameters q−2k and −a2q2k+1 in both sides of it by c−1q−2k and
−ca2q2k+1, c ∈ C, respectively. Indeed, both sides of (24) contain the expression

(q−2k,−a2q2k+1;q)m =
m−1∏
j=0

[
1−a2q2j+1−qjµ(2k;−a2)

]
,

where, as before,µ(2k;−a2) = q−2k − a2q2k+1. The left and right sides in (24) thu
represent polynomials in theµ(2k;−a2) of degreen. Since they are equal to each oth
on the infinite set of distinct pointsxk = µ(2k;−a2), we may analytically continue them
to any value ofµ. Since

(c−1q−2k,−ca2q2k+1;q)m =
m−1∏
j=0

[
1− a2q2j+1 − qjµc(2k;−a2)

]
,

where µc(2k;−a2) = c−1q−2k − ca2q2k+1, the replacementsq−2k → c−1q−2k and
a2q2k+1 → ca2q2k+1 in (24) are allowed.

We are now in a position to comparẽD(a)
n (µ(x;−a)|q) with the polynomials (22). The

fact is thatD̃(a)
n (µ(x;−a)|q) at the pointsx = x

(d)
k := 2k − ln(

√
aq/d)/ lnq are equal to

(a)
( ( (d) ) ) (

q−2kd−1√aq,−q2kd
√

aq, q−n
∣∣∣ n+1

)

D̃n µ xk ;−a |q = 3φ2

i
√

a q,−i
√

a q ∣q,−q ,
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where µ(x
(d)
k ;−a) = √

aq(d−1q−2k − dq2k). From (22) and (24) (withq−2k and
−a2q2k+1 replaced byd−1q−2k and−da2q2k+1, respectively) it then follows that

D̃(a)
n

(
µ

(
x

(d)
k ;−a

)|q) = un

(
(d−1q−2k − dq2k)/2;

√
q3/a,

√
q/a|q2).

From the orthogonality relations (23) one obtains infinite number of orthogonality
tions for the polynomialsD̃(a)

n (µ(x;−a)|q), which are parametrized by the samed as in
(23). They are of the form

∞∑
n=−∞

(−t1q
−2n/d, t1q

2nd,−t2q
−2n/d, t2q

2nd;q2)∞
(−t1t2/q2;q2)∞

× d4nq2n(2n−1)(1+ d2q4n)

(−d2;q2)∞(−q2/d2;q2)∞(q2;q2)∞
× D̃(a)

r

(
µ

(
x(d)
n ;−a

)|q)
D̃(a)

s

(
µ

(
x(d)
n ;−a

)|q)

= (q2;q2)r

(−q2a;q2)2
r

δrs,

where t1 = √
q3/a and t2 = √

q/a. It is important to know whether the correspondi
orthogonality measures here are extremal. The extremality of the measures in (25)
polynomialsD̃(a)

n (µc(x;−a)|q) depends on the extremality of the orthogonality meas
in (23) for the polynomials (22). If some of the measures in (23) are extremal, the
corresponding measures in (25) are also extremal.
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