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Abstract

A special case of the bigrJacobi polynomial®,, (x; a, b, c; ¢), which corresponds o= b = —c,
is shown to satisfy a discrete orthogonality relation for imaginary values of the paran{etgiside
of its commonly known domain @ a < ¢~1). SinceP, (x; ¢%, ¢%, —¢*: q) tend to Gegenbauer (or
ultraspherical) polynomials in the limit as— 1, this family represents anothgrextension of these
classical polynomials, different from the continuapsiltraspherical polynomials of Rogers. For a
dual family with respect to the polynomial3, (x; a, a, —a; q) (i.e., for dual discretg-ultraspherical
polynomials) we also find new orthogonality relations with extremal measures.
0 2004 Elsevier Inc. All rights reserved.
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1. Main results

It is well known that the bigy-Jacobi polynomials?, (x; a, b, c; ) are orthogonal for
values of the parameters in the intervals @, b < ¢~1, ¢ < 0. We show that these poly-
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nomials are also orthogonal outside of these intervals in a special caserwhenr= —c.
Since the polynomialsP, (x; g%, ¢%, —q%|q) tend to ultraspherical polynomials when
g — 1, it is natural to call thentdiscrete g-ultraspherical polynomials (because their
orthogonality measure is discrete, contrary to the orthogonality measure for continuous
g-ultraspherical polynomials of Rogers). We give explicitly an orthogonality relation for
P,(x;a,a,—alg) whena becomes imaginary. Orthogonality relations for dgalacobi
polynomials for the same special cases are also given.
Throughout the sequel we always assume that a fixed positive number such that
g < 1. We use (without additional explanation) notations of the theory-gipecial func-
tions (see, for example, [5]).
If one introduces the notation
C(x; q) i= Pu(x;a,a, —a; q) = 3da(q ", a%¢" Y, x; aq, —ag: 4, @), (1)
then an orthogonality relation fa?\"’ (x; ¢), which follows from that for the big-Jacobi
polynomials (see formula (7.3.12) in [5]), holds for positive values.de prove that the
ponnomiaIsC,(,")(x; g) are orthogonal also for imaginary valuesaofindx. In order to
dispense with imaginary numbers in this case, let us denote
—n n+1 ix

Cvr(la)(x;q) ::( )n ( a)(zx 6])_(—1) 3¢2< fqazl[q

q, q) (2)
wherex is real and O< a < co. These polynomials satisfy the recurrence relation
2CO (1 q) = an € (s @) + enC V1 (11 ), (3)

Wherean = (L+ag"™N/@A + ag®*Y), ¢, = a, — 1, andC{ (x; ) = 1. Observe that

> 1 and, hence, coefficients in (3) satisfy the cond|t|om+1 > 0 of Favard’s char-
acterlzatlon theorem for = 0,1, 2, ... (see, for example, [5]). This means that these
polynomials are orthogonal with respect to a positive measure. We prove that the orthogo-
nality relation for them is

S 3 SR e g )OO e vag g

s=0e=%1 (q C]

_ (-aq® qz)oo A+ag)a” @ Dn w32
= 2 2n+1 K q Sun- (4)
(4:9%00  (1+aq?™*%) (—aq; q)n
Since in the limit ag;y — 1 the polynomials (1) and (2) tend to Gegenbauer polynomials,
they representiscrete g-ultraspherical polynomials.

Note that the situation when along with orthogonal polynomjgléx), depending on
some parameters, the set of polynomiéls)” p, (ix) is also orthogonal, but for other
values of parameters, is known (see, for example, [1,4,6]). The detailed discussion of or-
thogonality property of Jacobi polynomials can be found in [4]. Contrary to the situation
n [1,4,6], in our case we have orthogonality relations for the whole set of polynomials
~@) . —

C, (x;q),n=0,1,2,....

In [2] we have introduced the polynomial3,(u(x; a); a, b, clq), u(x;a) :=q~* +
abg**t1, dual to the bigg-Jacobi polynomials, (x; a, b, c|q). If we seta =b = —c in
these polynomials, this leads to the polynomials
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Dr(laZ)(/J/(x9a2)|q) = Dn(u(x’aZ)a a, _a|q)

—x aZ x+l’ —n
= 3¢2( C —61"+1> (5)
aq, —aq

in w(x; a®) = g~ +a?q* 1. They correspond to indeterminate moment problem. We also
proved that the polynomials (5) satisfy the following orthogonality relations:

oo (1 4k+l)(aq Q)Zk k(2k—1) 1 (a) @
D@ (n(2k)lq) D, (m(2k
g A—a)@: Dz (1(2K)1q) D,y (14(2K)1q)

n

q% qHnq~
(aq?; q%)n

00 g%+3

(1 ) a a
3 (43 DAL 1@k ) (@) (1 2% + 1)lg) DS (12K + Dg)
k=0

5nn’ s (6)

(1 —aq)(q; q)2+1
(q% qPng™"
(aq?; q)n
where = (4% 4%)oo/(q; 4 oor 1(2K) = pu(2k; @), 11(2k + 1) = pu(2k + 1; @) and 0<
a < g—2. The orthogonality measures here are extremal.
2
For the polynomiaIsD,(ﬂ )(/L(x; a®)|q) with imaginarya it is natural to define

Sun’ s (7)

D,(fz)(u(x; —a2)|q) = Dn( (x; —a®);ia,ia, —ialq)

= 3¢2< Z;qu_xl;; 77, —CI”H)- (8)
These polynomials satisfy the recurrence relation
(@ —ag" ™D (u(x; —a)lq)
=—¢ 7 A +ag® DY) (1u(x; —a)lq)
+ q_z"_l(l + D (n(x; —a)lg) — ¢~ (A —g®) D, (n(x; —a)lq).

It is obvious from this relation thafD,(,“)(M(x; —a)|q) are real forx € R anda > 0. For
a > 0 they satisfy the conditions of Favard’s theorem and, therefore, are orthogonal with
respect to a positive measure.

The polynomialsb,(,“)(u(x; a)l|q) correspond to indeterminate moment problem and,
therefore, they have infinitely many positive orthogonality measures. We prove in the next
section that they satisfy the orthogonality relations

Z(l+aq4k+l)( aq; q)2x k(2k— 1)D(a)

H(@)
1+ aq)(g; 9) (1(2K)1g) D, (1(2K)1q)

k=0
G q%nq™"

=y 24 e s 9
y (_aqz’qz)n nn ( )
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e¢]

Z (14 ag¥**+3)(~agq; Q)2k+1qk(2k+1)D
A +aq)(q;: Pa+1

(D ((2k +1)|q) DS (1u(2k + D)lg)
k=0

_(@%qPng”
(—aq?; q?)n
wherey = (—aq%; 4?00/ (q: 4% o0, 1(2k) = n(2k; —a), u(2k + 1) = u(2k + 1; —a) and
a > 0. The corresponding orthogonality measures are extremal.

The polynomials (5) and (8) are dual to the polynomials (1) and (2). For this reason, we
call themdual discrete g-ultraspherical polynomials.

8nn/ ’ (10)

2. Proofs

The main idea of proving the orthogonality relations (4), (6), (7), (9) and (10) is to
establish the connection between the polynomials (2) and thedlitlecobi polynomials

pn(x:a.blg) :=2¢1(g ™", abq" ™ aq: q. qx), (11)
as well as between the polynomials (5), (8) and the dual jttlaicobi polynomials
dy (1u(x: ab); a, blq) :=3¢1(g ™. abg* . g " bq: q. 4" /a). (12)

considered in [2].

Proposition 1. The following expressions for the discrete g-ultraspherical polynomials (2)
hold:

(@ =)k s

Csd(xiq) = (—aq?; g2); pe(x?/ag® g7, —alg?), (13)
~(a) @ a9 Lar 2, 2 2
Cola(x5q) = E xpr(x“/aq®; q, —alq®), (14)

where pi(y; a, blq) arethelittle g-Jacobi polynomials (11).
Proof. We apply Singh’s quadratic transformation (3.10.13) from [5] for a terminaging
series to the expression in (2) for polynomiég) (x; g). This yields

C3 (x5 q) = (—D¥ago(g ™%, —ag® T, —x% —aq?,0; 42, ¢).

Now apply to this basic hypergeometric serigs the transformation formula (111.7) from
Appendix Il in [5] in order to get

. (¢; Or(—a)* _
CEZ)(x; q)= m k(k+1)2¢1(q Zk, —aq2k+l; q; qz,xz/a)~

Comparing this formula with the expression for the polynomials (11), one arrives at (13).
One can prove (14) by induction with the aid of formula (111.7) from Appendix 11 in [5]
and the recurrence relation (3). Let us show first that

ég]z)_l(x’ q) — (_1)k_1x3¢2(q_2(k_1), _aq2k+1’ _xZ; _aqz’ 0’ q2’ q2) (15)
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fork=1,23,.... Fork =1, 2 this formula is an immediate consequence of the recurrence
relation (3). As the next step we evaluate a m@ﬁxééﬁ) (x;9) — (1 —a, )CQZ) 1(x5 ).
By the recurrence relation (3) this sum should be equﬂ%l(x; q). This is the case
because itis equal to

6]2, 6]2)

2% 2%+1 .2
-1 q , —aq , =X
X{aZk 3452( —ag?,0

_ —2(k— 1)’ —a 2k+1’ _x2
—2k 2k+3 2
_ q , —aq , =X 2 2
—X3¢2< _an’O q:9 )1 (16)

multiplied by (—1)*. The second line in (16) follows from the readily verified identity
l+aq2(k+m)+l

1+ ag?+t

ayt (@ %5 q%m + (1 —ayt) (g 2 g2, = G %:¢%m.
The right side of (16) does coincide wifl’lgﬁl(x; q), defined by the same expression (15)
with k — k + 1. Thus, it remains only to apply formula (I11.7) from Appendix Ill in [5] in

order to arrive at (14). Proposition is proveda

Remark 1. Observe that in the course of proving formula (14), we established the quadratic
transformation
~2%-1 0242 2k, 2%+3 2

3¢2( Jag qfq ’q q) =y3¢z<q ’Olo;c"z’0 Y qz,qz) (17)
for the terminating basic hypergeometric polynomigds with k =0,1,2,.... The left
side in (17) defines (up to a simple multiplicative factor) the polynorrtiééﬁrl(x; q)
by (2) (whene = —a andy =ix) , whereas the right side follows from the expression (16)
for the same polynomials.

Remark 2. By using the interrelation (2) between the polynomiilé“) (x;¢9) and
C,E“)(x; q), itis easy to write down an analogue of the relations (13) and (14) for the latter
polynomials. In the limit ag — 1 these relations go over to the well-known transforma-
tions

Mn —1/2,-1/2)

Ch () =-71P, 2y* -1,

3

A
( )n+l P(’\ 1/2, 1/2>(2 2

CHla () = -1.

2 n+1
Writing down the orthogonality relation (7.3.3) in [5] for the litgeJacobi polynomials
pe(x%/aq?; q=1, —a|q?) and using the relation (13), one finds an orthogonality relation for
the set of polynom|al€(“)(x g),k=0,1,2,..., witha > 0:

Z d,C3) (Jag ™t ) C8) (Ja g+t g)
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(4% )0 (L+ag)a®  (q;q)x ek
(@990 (L4 ag¥ 1) (—aq; )2 ’

whered, = (—aq?; 4%),q* /(g% ¢?)s. Consequentlythe family of polynomials €5 (x; ¢),
k=0,1,2,..., isorthogonal on the set of pomts\/_q”l, s=0,1,2,....

Similarly, using formula (14) and the orthogonality relation for the ligtldacobi poly-
nomialspy (x2/aqg?; g, —alg?), we find an orthogonality relation

Zd ConWaq ™ o) Ch)  (Vag )

_ (£09% 4D A+a9)a™ ™ (@ D211 gia@irg

T @ A+ag®d) (—ag; Qi1 K
for the set of polynomialé’éﬁll(x; q),k=0,1,2,..., with a > 0, whered, is the same
as before. We see from this relation thtae polynomials Cg)ﬂ(x; q),k=0,1,2,..., are
orthogonal on the same set of points /a ¢**1, s =0,1,2, ....

However, the polynomialé’éz) (x;9),k=0,1,2,..., are not orthogonal to the polyno-
mlaIsCQZ)H(x; q),k=0,1,2,..., on this set of pointa/Eq”l, s=0,1,2, ....Inorder
to prove that the polynomialééz) (x;¢9),k=0,1,2,..., are orthogonal to the polynomi-
als Céz)ﬂ(x; q),k=0,1,2,..., one has to consider them on the set of poiatga ¢°*+1,
s=0,1,2,.... Since the polynomials from the first set are even and the polynomials from
the second set are odd, then

Zd CY (Wag o Cl)  (Vag™hq)

+Zd Co (—Vag h ) Co y (—Vag*tig) =0.

This gives the mutual orthogonality of the polynomiélg) (x;9),k=0,1,2,..., to the
polynomlalscéﬁrl(x; q), k=0,1,2,.... Then the orthogonality relation for the whole

set of polynomlalsﬁ,ﬁa) (x;9),n=0,1,2,..., can be written in the form (4). Thus, the
orthogonality relation (4) is proved.

Proposition 2. The following expressions for the dual discrete g-ultraspherical polynomi-
als (5) hold:

D (1(2k: a)lq) = du (ks g ~*a): g™, alg?)

—2k 2k+1 ,—2n

7a 9

:3¢1(q qa , 1 qz,q2”+1>, (18)
q

D\ (1(2k + 1; a)lq) = q"dn (n(k; qa); q, alq?)

2k 2k+3 -2
=61"3¢1<q aiqz 4 612,612"1), (19)
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where k are nonnegative integers and d,, (1. (x; be); b, c|q) are polynomials (12).

Proof. Applying to the right side of (5) the formula (111.13) from Appendix Il in [5]
and then Singh’s quadratic relation (3.10.13) of [5] for terminagipg series, after some
transformations one obtains

Clza 612>‘

-2k 2 2k+1 2 2n+2
2 _ — ,a
DY) (w(2k; a®)lq) = a=*q k(2k+1)3¢2<q

q »a~q
a2q270

Now apply the relation
g " B (/s < g " a ' )
which follows from formula (111.7) of Appendix Il in [5], in order to get
(q—2k+1;q2)k2¢ (qZk’a2q2k+l 2 q2"+2>
(@%q%; %) q ’ '

DI (1(2k; a®)lq) =

Using the formula (111.8) from [5], one arrives at the expression m;ﬂ?z)(u(Zk; a®|q)

in terms of the basic hypergeometric function from (18), coinciding wjttu (k; ¢ ~1a?);

g1, a%|¢?). The formula (19) is proved in the same way by using relation (17). Proposition
is proved. O

For the polynomialsﬁ,(,“)(u(m; —a)|g) with nonnegative integera, we have the ex-
pressions

D (1(2k: ~a)lq) = du (1 (ks —g~*a): g% —alq?)

_2k 2k+1,,—2n
,—a
=3¢>1<q _Z 2 1 612,612"+1>, (20)
q
Dy (w(2k+1: ~a)lq) = ¢"du (ks —qa): ¢, —alq?)
—2k 2k+3 ,—2n
’ —a ’ -
an3¢l(q _Zlqz q qz, qzn 1). (21)

Now the orthogonality relations of Section 1 for the polynomiafg)(u(x; a)|q) and
D,(,“)(;L(x; —a)lq) are proved by means of formulas (18)—(21) in the same way as in the

case of polynomialé,ﬁ“)(x; q). The corresponding orthogonality measures are extremal
since they are extremal for the dual litgeJacobi polynomials from formulas (18)—(21)
(see [2]).

3. Relation to Berg—Ismail polynomials

Since the polynomial®® (1 (x; a)lq) and D' (i (x; —a)|q) correspond to the inde-
terminate moment problems, there exist infinitely many orthogonality relations for them.
Let us derive some set of these relationsfd,i‘)(u(x; —a)lq), by using their relation to
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the polynomials (5.18) of Berg and Ismail [3]. These polynomials are (up to a factor) of
the form

& —ge—¢§ —n
£ _ £y /0. _ ge /1, —qe > /t1, q
unp((e® —e 2; 11, t =
n(( )/2; 11, 12lq) 3¢1( 4/t

and orthogonality relations, parametrized by a number < d < 1, are given by

q, qntl/lz) (22)

i (—t1g™"/d, 1nq"d, —t2q™"/d, 129"d; Q)0 d™q" @V (14 d%q>")

W (—1112/9: @)oo (—d?: )oo(—=4/d% 0)oo(q: D)oo
x u((d71q™" —dq™) /2 11, t2)uy ((d1q ™" — dg™) /2 11, 12)
@: 9)r(1/12)" (23)

T (—q?¥nrza)q
The orthogonality measure here is positive farr, € R and 1t > 0. It is not known
whether these measures are extremal or not. y
In order to use this orthogonality relation for the polynomialg) (n(x; —a)lq), letus
consider the transformation formula

B2, %41 o
—a )
3¢>2< q 1 g, —61"“)

iaq, —iaq
2k 2 2k+1 —2n
a
=3¢1( _aqq 4 qz,qz”“) (24)

which is obtained by equating two expressions (8) and (Zoﬁﬁﬁ?(u(Zk; —a)|q). This
formula is true for any nonnegative integer values ofThe relation (24) is still valid if
onereplaces numerator parameters g —% and —a2¢%*1 in both sides of it by ¢ 14 ~% and
—ca?q?+1, ¢ € C, respectively. Indeed, both sides of (24) contain the expression

m—1

(%, =a?q® " gm = [ [ [1-a%¢® T —q7 n(2k; —a?)].
j=0

where, as beforey (2k; —a?) = g% — a?¢%*1. The left and right sides in (24) thus
represent polynomials in the(2k; —a?) of degreen. Since they are equal to each other
on the infinite set of distinct points, = 1 (2k; —a?), we may analytically continue them
to any value ofux. Since

m—1
(C—lq—Zk’ _ 2 2k+1’ q) l_[ [1_ a2q2]+l _ q]l’LC(Zka _(12)]7
j=0
where pe(2k; —a?) = ¢ 1¢=% — ca?q%*1, the replacementg =% — ¢~14=% and

a?q®+1 — ca®q%+1in (24) are allowed.
We are now in a position to compafé,”)(u(x; —a)|q) with the polynomials (22). The
factis that[),(l”)(u(x; —a)l|q) at the pointst = x,Ed) :=2k —In(/aq/d)/Inq are equal to

—2k -1 % .
> )., q d aq, —q d aq,q 1
Dy (" —a)lq) =3¢2( a4 Y g —g >
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where 1 (x\V; —a) = Jag(d g% — dq%). From (22) and (24) (withg=% and
—a?q®+1 replaced byl ~1¢ =% and—da?q%+1, respectively) it then follows that

DO (u(x; —a)lq) = un (2% — dq®)/2:\/q3/a, Vq/alq?).

From the orthogonality relations (23) one obtains infinite number of orthogonality rela-

tions for the polynomialsﬁ,ﬁa)(u(x; —a)lq), which are parametrized by the samas in
(23). They are of the form

i (—t1g72"/d, 119%'d, —12q= " /d , 124?"d; ®) oo
(—1112/4%: 4®) 0
d4nq2n(2n—l)(1+d2q4n)
* (Cd% 400 (0242 4D oo % D)oo
x DI (i —a)lg) D (1 (xi: —a)lq)
(G595
T (—q2a;q»)2"

n=—0oo

wheret; = /g3/a andt, = \/g/a. It is important to know whether the corresponding
orthogonality measures here are extremal. The extremality of the measures in (25) for the
polynomiaIsD,(,“)(Mc(x; —a)|q) depends on the extremality of the orthogonality measures

in (23) for the polynomials (22). If some of the measures in (23) are extremal, then the
corresponding measures in (25) are also extremal.
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