92 research outputs found

    Phosphorylation of bamboo mosaic virus satellite RNA (satBaMV)-encoded protein P20 downregulates the formation of satBaMV-P20 ribonucleoprotein complex

    Get PDF
    Bamboo mosaic virus (BaMV) satellite RNA (satBaMV) depends on BaMV for its replication and encapsidation. SatBaMV-encoded P20 protein is an RNA-binding protein that facilitates satBaMV systemic movement in co-infected plants. Here, we examined phosphorylation of P20 and its regulatory functions. Recombinant P20 (rP20) was phosphorylated by host cellular kinase(s) in vitro, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and mutational analyses revealed Ser-11 as the phosphorylation site. The phosphor-mimic rP20 protein interactions with satBaMV-translated mutant P20 were affected. In overlay assay, the Asp mutation at S11 (S11D) completely abolished the self-interaction of rP20 and significantly inhibited the interaction with both the WT and S11A rP20. In chemical cross-linking assays, S11D failed to oligomerize. Electrophoretic mobility shift assay and subsequent Hill transformation analysis revealed a low affinity of the phospho-mimicking rP20 for satBaMV RNA. Substantial modulation of satBaMV RNA conformation upon interaction with nonphospho-mimic rP20 in circular dichroism analysis indicated formation of stable satBaMV ribonucleoprotein complexes. The dissimilar satBaMV translation regulation of the nonphospho- and phospho-mimic rP20 suggests that phosphorylation of P20 in the ribonucleoprotein complex converts the translation-incompetent satBaMV RNA to messenger RNA. The phospho-deficient or phospho-mimicking P20 mutant of satBaMV delayed the systemic spread of satBaMV in co-infected Nicotiana benthamiana with BaMV. Thus, satBaMV likely regulates the formation of satBaMV RNP complex during co-infection in planta

    Abstracts of presentations on plant protection issues at the xth international congress of virology: August 11-16,1996 Binyanei haOoma, Jerusalem, Israel Part 2 Plenary Lectures

    Get PDF

    Abstracts of presentations on plant protection issues at the fifth international Mango Symposium Abstracts of presentations on plant protection issues at the Xth international congress of Virology: September 1-6, 1996 Dan Panorama Hotel, Tel Aviv, Israel August 11-16, 1996 Binyanei haoma, Jerusalem, Israel

    Get PDF

    Viral ecogenomics across the Porifera

    Get PDF
    BackgroundViruses directly affect the most important biological processes in the ocean via their regulation of prokaryotic and eukaryotic populations. Marine sponges form stable symbiotic partnerships with a wide diversity of microorganisms and this high symbiont complexity makes them an ideal model for studying viral ecology. Here, we used morphological and molecular approaches to illuminate the diversity and function of viruses inhabiting nine sponge species from the Great Barrier Reef and seven from the Red Sea.ResultsViromic sequencing revealed host-specific and site-specific patterns in the viral assemblages, with all sponge species dominated by the bacteriophage order Caudovirales but also containing variable representation from the nucleocytoplasmic large DNA virus families Mimiviridae, Marseilleviridae, Phycodnaviridae, Ascoviridae, Iridoviridae, Asfarviridae and Poxviridae. Whilst core viral functions related to replication, infection and structure were largely consistent across the sponge viromes, functional profiles varied significantly between species and sites largely due to differential representation of putative auxiliary metabolic genes (AMGs) and accessory genes, including those associated with herbicide resistance, heavy metal resistance and nylon degradation. Furthermore, putative AMGs varied with the composition and abundance of the sponge-associated microbiome. For instance, genes associated with antimicrobial activity were enriched in low microbial abundance sponges, genes associated with nitrogen metabolism were enriched in high microbial abundance sponges and genes related to cellulose biosynthesis were enriched in species that host photosynthetic symbionts.ConclusionsOur results highlight the diverse functional roles that viruses can play in marine sponges and are consistent with our current understanding of sponge ecology. Differential representation of putative viral AMGs and accessory genes across sponge species illustrate the diverse suite of beneficial roles viruses can play in the functional ecology of these complex reef holobionts

    Aminoacylation of barley stripe mosaic virus RNA: polyadenylate-containing RNA has a 3'-terminal tyrosine-accepting structure

    Get PDF
    Barley stripe mosaic virus (BSMV) RNA which was previously reported to contain poly(A) sequences (Agranovsky et al., 1978) can be specifically esterified with tyrosine in vitro in the presence of an aminoacyl-tRNA synthetase fraction from wheat embryos. All the three RNA components of the BSMV strain with a three-component genome (Norwich) and both RNA components of a two-component strain (Russian) can be tyrosylated. The poly(A)-containing (bound to oligo(dT)-cellulose) and poly(A)-deficient(not bound to oligo(dT)-cellulose) fractions of BSMV RNA display a similar amino acidaccepting ability. The nucleotide sequence which accepts tyrosine is coupled with the intact genomic polyadenylated BSMV RNA. The viral RNA isolated after sucrose density gradient centrifugation under drastic denaturing conditions retains its aminoacylating activity, which suggests that this activity is not due to the presence in a BSMV RNA preparation of a tyrosine tRNA associated with BSMV RNA. Inhibition of aminoacylation of the 3’-oxidized (treated with sodium metaperiodate) BSMV RNA suggests that the tyrosine-accepting structure is localized at the 3’ terminus of BSMV RNA molecules. It is shown that segments of different lengths obtained upon random fragmentation can be tyrosylated. The 3’-terminal (tyrosine-accepting) poly(A)+ segments can be isolated. The shortest segments of viral RNA capable of being aminoacylated [i.e., containing both tRNA-like structure and poly(A)] consists of approximately 150-200 nucleotides. The analysis of the oligonucleotides derived from individual BSMV RNA components labeled with 32P at the 3’ end revealed two types of 3’-terminal sequences different from poly(A). It is suggested that a poly(A) sequence is intercalated between a 3’-terminal tyrosineaccepting structure and the 5’-terminal portion of poly(A)+ BSMV RNA
    • …
    corecore