439 research outputs found
Image Ellipticity from Atmospheric Aberrations
We investigate the ellipticity of the point-spread function (PSF) produced by
imaging an unresolved source with a telescope, subject to the effects of
atmospheric turbulence. It is important to quantify these effects in order to
understand the errors in shape measurements of astronomical objects, such as
those used to study weak gravitational lensing of field galaxies. The PSF
modeling involves either a Fourier transform of the phase information in the
pupil plane or a ray-tracing approach, which has the advantage of requiring
fewer computations than the Fourier transform. Using a standard method,
involving the Gaussian weighted second moments of intensity, we then calculate
the ellipticity of the PSF patterns. We find significant ellipticity for the
instantaneous patterns (up to more than 10%). Longer exposures, which we
approximate by combining multiple (N) images from uncorrelated atmospheric
realizations, yield progressively lower ellipticity (as 1 / sqrt(N)). We also
verify that the measured ellipticity does not depend on the sampling interval
in the pupil plane using the Fourier method. However, we find that the results
using the ray-tracing technique do depend on the pupil sampling interval,
representing a gradual breakdown of the geometric approximation at high spatial
frequencies. Therefore, ray tracing is generally not an accurate method of
modeling PSF ellipticity induced by atmospheric turbulence unless some
additional procedure is implemented to correctly account for the effects of
high spatial frequency aberrations. The Fourier method, however, can be used
directly to accurately model PSF ellipticity, which can give insights into
errors in the statistics of field galaxy shapes used in studies of weak
gravitational lensing.Comment: 9 pages, 5 color figures (some reduced in size). Accepted for
publication in the Astrophysical Journa
Lower bounds on photometric redshift errors from Type Ia supernovae templates
Cosmology with Type Ia supernovae heretofore has required extensive
spectroscopic follow-up to establish a redshift. Though tolerable at the
present discovery rate, the next generation of ground-based all-sky survey
instruments will render this approach unsustainable. Photometry-based redshift
determination is a viable alternative, but introduces non-negligible errors
that ultimately degrade the ability to discriminate between competing
cosmologies. We present a strictly template-based photometric redshift
estimator and compute redshift reconstruction errors in the presence of
photometry and statistical errors. With reasonable assumptions for a cadence
and supernovae distribution, these redshift errors are combined with systematic
errors and propagated using the Fisher matrix formalism to derive lower bounds
on the joint errors in and relevant to the next
generation of ground-based all-sky survey.Comment: 23 pages, 6 figure
Design and performance of the ADMX SQUID-based microwave receiver
The Axion Dark Matter eXperiment (ADMX) was designed to detect ultra-weakly
interacting relic axion particles by searching for their conversion to
microwave photons in a resonant cavity positioned in a strong magnetic field.
Given the extremely low expected axion-photon conversion power we have
designed, built and operated a microwave receiver based on a Superconducting
QUantum Interference Device (SQUID). We describe the ADMX receiver in detail as
well as the analysis of narrow band microwave signals. We demonstrate the
sustained use of a SQUID amplifier operating between 812 and 860 MHz with a
noise temperature of 1 K. The receiver has a noise equivalent power of
1.1x10^-24 W/sqrt(Hz) in the band of operation for an integration time of
1.8x10^3 s.Comment: 8 pages, 12 figures, Submitted to Nuclear Inst. and Methods in
Physics Research,
A Search for Scalar Chameleons with ADMX
Scalar fields with a "chameleon" property, in which the effective particle
mass is a function of its local environment, are common to many theories beyond
the standard model and could be responsible for dark energy. If these fields
couple weakly to the photon, they could be detectable through the "afterglow"
effect of photon-chameleon-photon transitions. The ADMX experiment was used in
the first chameleon search with a microwave cavity to set a new limit on scalar
chameleon-photon coupling excluding values between 2*10^9 and 5*10^14 for
effective chameleon masses between 1.9510 and 1.9525 micro-eV.Comment: 4 pages, 3 figure
Hybrid zones of Natrix helvetica and N. natrix: Phenotype data from iNaturalist and genetics reveal concordant clines and the value of species-diagnostic morphological traits
Using georeferenced photographic records of 2944 grass snakes from Germany, Austria, and northern Italy as well as previously published mtDNA sequences (n = 1062) and microsatellite data (n = 952) for grass snakes from the same regions, we examined whether or not coloration and pattern reliably allow to differentiate between Natrix natrix and N. helvetica and if so, whether the distribution patterns revealed by phenotypes and genetics are congruent. Furthermore, we used cline analyses across hybrid zones to test whether the phenotypic transition from one species to the other parallels the steep clines unveiled by genetics. Our results suggest that the two species can be reliably differentiated using coloration and pattern. The most powerful diagnostic traits are the presence/absence of side bars on the body flanks, the number of occipital spots, and the shape of the posterior dark occipital spot. The distributions of morphologically identified N. natrix and N. helvetica match their genetically confirmed ranges. Single conflicting individuals morphologically identified as N. natrix or hybrids within the distribution range of N. helvetica either represent misidentifications or translocated snakes. For the genetic markers and phenotypes, our cline analyses revealed concordant steep clines across hybrid zones. However, the southern part of the hybrid zone in Italy, for which no sufficient genetic data are available, should be studied in more detail because the phenotypic data suggest a smooth cline in this region. The unexpected high percentage of putative hybrids with dorsal stripes in this region also calls for further research. For northwestern Germany, another region for which no genetically verified records are available, iNaturalist data suggest that the contact zone of N. natrix and N. helvetica is near the Ems River and extends from there southeastwards to the region of Höxter, North Rhine-Westphalia
A SQUID-based microwave cavity search for dark-matter axions
Axions in the micro eV mass range are a plausible cold dark matter candidate
and may be detected by their conversion into microwave photons in a resonant
cavity immersed in a static magnetic field. The first result from such an axion
search using a superconducting first-stage amplifier (SQUID) is reported. The
SQUID amplifier, replacing a conventional GaAs field-effect transistor
amplifier, successfully reached axion-photon coupling sensitivity in the band
set by present axion models and sets the stage for a definitive axion search
utilizing near quantum-limited SQUID amplifiers.Comment: 4 pages, 5 figures, submitted to PR
Mixed axion/neutralino cold dark matter in supersymmetric models
We consider supersymmetric (SUSY) models wherein the strong CP problem is
solved by the Peccei-Quinn (PQ) mechanism with a concommitant axion/axino
supermultiplet. We examine R-parity conserving models where the neutralino is
the lightest SUSY particle, so that a mixture of neutralinos and axions serve
as cold dark matter. The mixed axion/neutralino CDM scenario can match the
measured dark matter abundance for SUSY models which typically give too low a
value of the usual thermal neutralino abundance, such as models with wino-like
or higgsino-like dark matter. The usual thermal neutralino abundance can be
greatly enhanced by the decay of thermally-produced axinos to neutralinos,
followed by neutralino re-annihilation at temperatures much lower than
freeze-out. In this case, the relic density is usually neutralino dominated,
and goes as \sim (f_a/N)/m_{axino}^{3/2}. If axino decay occurs before
neutralino freeze-out, then instead the neutralino abundance can be augmented
by relic axions to match the measured abundance. Entropy production from
late-time axino decays can diminish the axion abundance, but ultimately not the
neutralino abundance. In mixed axion/neutralino CDM models, it may be possible
to detect both a WIMP and an axion as dark matter relics. We also discuss
possible modifications of our results due to production and decay of saxions.
In the appendices, we present expressions for the Hubble expansion rate and the
axion and neutralino relic densities in radiation, matter and decaying-particle
dominated universes.Comment: 31 pages including 21 figure
- …