11 research outputs found
Visualization of Protein Interactions in Living Cells Using Bimolecular Fluorescence Complementation (BiFC) Analysis
Protein interactions integrate stimuli from different signaling pathways and developmental programs. Bimolecular fluorescence complementation (BiFC) analysis has been developed for visualization of protein interactions in living cells. This approach is based on complementation between two fragments of a fluorescent protein when they are brought together by an interaction between proteins fused to the fragments, and it enables visualization of the subcellular locations of protein interactions in the normal cellular environment. It can be used for the analysis of many protein interactions and does not require information about the structures of the interaction partners. A multicolor BiFC approach has been developed for simultaneous visualization of interactions with multiple alternative partners in the same cell, based on complementation between fragments of engineered fluorescent proteins that produce bimolecular fluorescent complexes with distinct spectral characteristics. This enables comparison of subcellular distributions of different protein complexes in the same cell and allows analysis of competition between mutually exclusive interaction partners.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144227/1/cpcb2103.pd
Visualization of Protein Interactions in Living Cells Using Bimolecular Fluorescence Complementation (BiFC) Analysis
Protein interactions integrate stimuli from different signaling pathways and developmental programs. Bimolecular fluorescence complementation (BiFC) analysis has been developed for visualization of protein interactions in living cells. This approach is based on complementation between two fragments of a fluorescent protein when they are brought together by an interaction between proteins fused to the fragments, and it enables visualization of the subcellular locations of protein interactions in the normal cellular environment. It can be used for the analysis of many protein interactions and does not require information about the structures of the interaction partners. A multicolor BiFC approach has been developed for simultaneous visualization of interactions with multiple alternative partners in the same cell, based on complementation between fragments of engineered fluorescent proteins that produce bimolecular fluorescent complexes with distinct spectral characteristics. This enables comparison of subcellular distributions of different protein complexes in the same cell and allows analysis of competition between mutually exclusive interaction partners.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143753/1/cpcb2103.pd
Visualization of Protein Interactions in Living Cells Using Bimolecular Fluorescence Complementation (BiFC) Analysis
Protein interactions integrate stimuli from different signaling pathways and developmental programs. Bimolecular fluorescence complementation (BiFC) analysis has been developed for visualization of protein interactions in living cells. This approach is based on complementation between two fragments of a fluorescent protein when they are brought together by an interaction between proteins fused to the fragments, and it enables visualization of the subcellular locations of protein interactions in the normal cellular environment. It can be used for the analysis of many protein interactions and does not require information about the structures of the interaction partners. A multicolor BiFC approach has been developed for simultaneous visualization of interactions with multiple alternative partners in the same cell, based on complementation between fragments of engineered fluorescent proteins that produce bimolecular fluorescent complexes with distinct spectral characteristics. This enables comparison of subcellular distributions of different protein complexes in the same cell and allows analysis of competition between mutually exclusive interaction partners.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153035/1/cpps1910.pd
Visualization of Myc/Max/Mad Family Dimers and the Competition for Dimerization in Living Cells
Myc and Mad family proteins play opposing roles in the control of cell growth and proliferation. We have visualized the subcellular locations of complexes formed by Myc/Max/Mad family proteins using bimolecular fluorescence complementation (BiFC) analysis. Max was recruited to different subnuclear locations by interactions with Myc versus Mad family members. Complexes formed by Max with Mxi1, Mad3, or Mad4 were enriched in nuclear foci, whereas complexes formed with Myc were more uniformly distributed in the nucleoplasm. Mad4 was localized to the cytoplasm when it was expressed separately, and Mad4 was recruited to the nucleus through dimerization with Max. The cytoplasmic localization of Mad4 was determined by a CRM1-dependent nuclear export signal located near the amino terminus. We compared the relative efficiencies of complex formation among Myc, Max, and Mad family proteins in living cells using multicolor BiFC analysis. Max formed heterodimers with the basic helix-loop-helix leucine zipper (bHLHZIP) domain of Myc (bMyc) more efficiently than it formed homodimers. Replacement of two amino acid residues in the leucine zipper of Max reversed the relative efficiencies of homo- and heterodimerization in cells. Surprisingly, Mad3 formed complexes with Max less efficiently than bMyc, whereas Mad4 formed complexes with Max more efficiently than bMyc. The distinct subcellular locations and the differences between the efficiencies of dimerization with Max indicate that Mad3 and Mad4 are likely to modulate transcription activation by Myc at least in part through distinct mechanisms
DNA sequence-dependent folding determines the divergence in binding specificities between Maf and other bZIP proteins
Maf family transcription factors are atypical basic region–leucine zipper (bZIP) proteins that contain a variant basic region and an ancillary DNA-binding region. These proteins recognize extended DNA sequence elements flanking the core recognition element bound by canonical bZIP proteins. We have investigated the causes for the differences in DNA recognition between Maf and other bZIP family proteins through studies of Maf secondary structure, trypsin sensitivity, binding affinity, dissociation rate and DNA contacts. Our results show that specific DNA binding by Maf is coupled to a conformational change involving both the basic and ancillary DNA-binding regions that depends on the extended DNA sequence elements. Two basic region amino acid residues that differ between Maf and canonical bZIP proteins facilitate the conformational change required for Maf recognition of the extended elements. Nucleotide base contacts made by Maf differ from those made by canonical bZIP proteins. Taken together, our results suggest that the unusual DNA binding specificity of Maf family proteins is mediated by concerted folding of structurally unrelated DNA recognition motifs
ActRIIB:ALK4-Fc alleviates muscle dysfunction and comorbidities in murine models of neuromuscular disorders
Patients with neuromuscular disorders suffer from a lack of treatment options for skeletal muscle weakness and disease comorbidities. Here, we introduce as a potential therapeutic agent a heterodimeric ligand-trapping fusion protein, ActRIIB:ALK4-Fc, which comprises extracellular domains of activin-like kinase 4 (ALK4) and activin receptor type IIB (ActRIIB), a naturally occurring pair of type I and II receptors belonging to the TGF-β superfamily. By surface plasmon resonance (SPR), ActRIIB:ALK4-Fc exhibited a ligand binding profile distinctly different from that of its homodimeric variant ActRIIB-Fc, sequestering ActRIIB ligands known to inhibit muscle growth but not trapping the vascular regulatory ligand bone morphogenetic protein 9 (BMP9). ActRIIB:ALK4-Fc and ActRIIB-Fc administered to mice exerted differential effects - concordant with SPR results - on vessel outgrowth in a retinal explant assay. ActRIIB:ALK4-Fc induced a systemic increase in muscle mass and function in wild-type mice and in murine models of Duchenne muscular dystrophy (DMD), amyotrophic lateral sclerosis (ALS), and disuse atrophy. Importantly, ActRIIB:ALK4-Fc improved neuromuscular junction abnormalities in murine models of DMD and presymptomatic ALS and alleviated acute muscle fibrosis in a DMD model. Furthermore, in combination therapy ActRIIB:ALK4-Fc increased the efficacy of antisense oligonucleotide M12-PMO on dystrophin expression and skeletal muscle endurance in an aged DMD model. ActRIIB:ALK4-Fc shows promise as a therapeutic agent, alone or in combination with dystrophin rescue therapy, to alleviate muscle weakness and comorbidities of neuromuscular disorders