12 research outputs found

    Trinuclear heterometallic CuII-MnII complexes of a salen type Schiff base ligand: anion dependent variation of phenoxido bridging angles and magnetic coupling

    Get PDF
    Five new trinuclear heterometallic CuII-MnII complexes [(CuL)2Mn(O2CPh)2] (1), [(CuL)2Mn(N3)2] (2), [(CuL)2Mn(NCO)2] (3), [(CuL)2Mn(NO3)2] (4) and [(CuL)2Mn(Sal)2]∙CH2Cl2 (5) have been synthesized with the di-Schiff base ligand H2L (where, H2L= N,N'-bis(salicylidene)-1,3-propanediamine and Sal= salicylate). These complexes with different anionic co-ligands have been synthesized to attain a large variation in phenoxido bridging angles and to investigate its consequence on magnetic properties. Single crystal X-ray diffraction analyses reveal that complexes 1, 2, 4 and 5 are linear, whereas 3 has an angular geometry. Variable temperature magnetic susceptibility measurements suggest that all five complexes possess an overall antiferromagnetic interaction between CuII and MnII ions, which results in a final ferrimagnetic ground state with spin 3/2 in the CuII-MnII-CuII trinuclear structure. The weakest antiferromagnetic interaction (JCu-Mn= -7.0 cm-1) is observed for 2 having the lowest value of the Cu-O-Mn angle (92.0°), while the strongest antiferromagnetic interaction (JCu-Mn= -26.5 cm-1) is observed for 3 having the largest Cu-O-Mn angle (101.4°). Complexes 1, 4 and 5 show an average Cu-O-Mn angles of 98.2°, 97.6° and 97.7°, respectively, that lead to intermediate antiferromagnetic interactions (JCu-Mn = -9.6, -9.7, -9.3 cm-1 respectively)

    Online) An Open Access

    Get PDF
    ABSTRACT Climbing plants can have a large impact on the diversity, dominance, structure and dynamics of tropical dry deciduous forests. In present study, a total of 174 climbing plants belonging to 32 species, 28 genera, and 14 families wer e identified. The most dominant family is Convolvulaceae (21.95%). These consisted of 30 herbaceous climber and 11 liana species. Twinner was the most predominant ( 70.73%) climbing mechanism. The dominant specie r ecorded from this for est was Calamus andamanicus, and Erycibe expansa shows the highest frequency (70%). Most of the species wer e randomly distributed ( 95.12%)

    Evaluation of chronic arsenic poisoning due to consumption of contaminated ground water in West Bengal, India

    No full text
    Background: Chronic arsenic poisoning is an important public health problem and most notable in West Bengal and Bangladesh. In this study different systemic manifestations in chronic arsenic poisoning were evaluated. Methods: A nonrandomized, controlled, cross-sectional, observational study was carried out in Arsenic Clinic, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, over a period of 1 year 4 months. Seventy-three cases diagnosed clinically, consuming water containing arsenic ≥50 μg/L and having hair and nail arsenic level >0.6 μg/L, were included. Special investigations included routine parameters and organ-specific tests. Arsenic levels in the drinking water, hair, and nail were measured in all. Twenty-five nonsmoker healthy controls were evaluated. Results: Murshidabad and districts adjacent to Kolkata, West Bengal, were mostly affected. Middle-aged males were the common sufferers. Skin involvement was the commonest manifestation (100%), followed by hepatomegaly [23 (31.5%)] with or without transaminitis [7 (9.58%)]/portal hypertension [9 (12.33%)]. Restrictive abnormality in spirometry [11 (15.06%)], bronchiectasis [4 (5.47%)], interstitial fibrosis [2 (2.73%)], bronchogenic carcinoma [2 (2.73%)], oromucosal plaque [7 (9.58%)], nail hypertrophy [10 (13.69%)], alopecia [8 (10.95%)], neuropathy [5 (6.84%)], and Electrocardiography abnormalities [5 (6.84%)] were also observed. Conclusions: Mucocutaneous and nail lesions, hepatomegaly, and restrictive change in spirometry were the common and significant findings. Other manifestations were characteristic but insignificant

    Trinuclear heterometallic Cu<sup>II</sup>–Mn<sup>II</sup> complexes of a salen type Schiff base ligand: anion dependent variation of phenoxido bridging angles and magnetic coupling

    No full text
    Five new trinuclear heterometallic CuII–MnII complexes [(CuL) 2Mn(O2CPh)2] (1), [(CuL) 2Mn(N3)2] (2), [(CuL) 2Mn(NCO)2] (3), [(CuL) 2Mn(NO3)2] (4) and [(CuL) 2Mn(Sal) 2]•CH2Cl2 (5) have been synthesized with the di-Schiff base ligand H2L (where H2L = N,N′-bis(salicylidene)-1,3-propanediamine and Sal = salicylate). These complexes with different anionic co-ligands have been synthesized to attain a large variation in phenoxido bridging angles and to investigate its consequence on magnetic properties. Single crystal X-ray diffraction analyses reveal that complexes 1, 2, 4 and 5 are linear, whereas 3 has an angular geometry. Variable temperature magnetic susceptibility measurements suggest that all five complexes possess an overall antiferromagnetic interaction between CuII and MnII ions, which results in a final ferrimagnetic ground state with spin 3/2 in the CuII–MnII–CuII trinuclear structure. The weakest antiferromagnetic interaction (JCu–Mn = −7.0 cm−1) is observed for 2 having the lowest value of the Cu–O–Mn angle (92.0°), while the strongest antiferromagnetic interaction (JCu–Mn = −26.5 cm−1) is observed for 3 having the largest Cu–O–Mn angle (101.4°). Complexes 1, 4 and 5 show average Cu–O–Mn angles of 98.2°, 97.6° and 97.7°, respectively, that lead to intermediate antiferromagnetic interactions (JCu–Mn = −9.6, −9.7, −9.3 cm−1 respectively)

    ILC Reference Design Report Volume 1 - Executive Summary

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization

    ILC Reference Design Report Volume 4 - Detectors

    No full text
    This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics.This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics
    corecore