15 research outputs found

    コンバラトキシンによる凝固亢進における単球由来組織因子陽性細胞外小胞の関与

    Get PDF
    Objectives: Convallatoxin (CNT) is a natural cardiac glycoside extracted from lily of the valley (Convallaria majalis). Although it is empirically known to cause blood coagulation disorders, the underlying mechanism remains unclear. CNT exerts cytotoxicity and increases tissue factor (TF) expression in endothelial cells. However, the direct action of CNT on blood coagulation remains unclear. Therefore, herein, we investigated the effects of CNT on whole blood coagulation system and TF expression in monocytes. Methods: Blood samples were collected from healthy volunteers to measure plasma thrombin–antithrombin complex (TAT) concentration using ELISA and to perform rotational thromboelastometry (ROTEM) and whole-blood extracellular vesicle (EV)-associated TF (EV-TF) analysis. The effects of CNT were also investigated using the monocytic human cell line THP-1. Quantitative real-time PCR and western blotting were performed, and PD98059, a mitogen-activated protein kinase (MAPK) inhibitor, was used to elucidate the action mechanism of CNT-mediated TF production. Results: CNT treatment increased EV-TF activity, shortened the whole blood clotting time in rotational thromboelastometry analysis, and increased TAT levels, which is an index of thrombin generation. Furthermore, CNT increased TF mRNA expression in THP-1 cells and EV-TF activity in the cell culture supernatant. Therefore, CNT may induce a hypercoagulable state with thrombin generation, in which elevated EV-TF activity derived from monocytes might be involved. These procoagulant effects of CNT were reversed by PD98059, suggesting that CNT-induced TF production in monocytes might be mediated by the MAPK pathway. Conclusions: The findings of the present study have further clarified the procoagulant properties of CNT.本文は発行元が定める公開猶予期間終了後に公開

    Inhibition of the Hepatic Uptake of 99mTc-Tetrofosmin Using an Organic Cation Transporter Blocker

    Get PDF
    The accumulation of high levels of 99mTc-tetrofosmin (99mTc-TF) in the hepatobiliary system can lead to imaging artifacts and interference with diagnosis. The present study investigated the transport mechanisms of 99mTc-TF and attempted to apply competitive inhibition using a specific inhibitor to reduce 99mTc-TF hepatic accumulation. In this in vitro study, 99mTc-TF was incubated in HEK293 cells expressing human organic anion transporting polypeptide 1B1 (OATP1B1), OATP1B3, OATP2B1, organic anion transporter 2 (OAT2), organic cation transporter 1 (OCT1), OCT2, and Na+-taurocholate cotransporting polypeptide with or without each specific inhibitor to evaluate the contribution of each transporter to 99mTc-TF transportation. In vivo studies, dynamic planar imaging, and single photon emission computed tomography (SPECT) experiments with rats were performed to observe alterations to 99mTc-TF pharmacokinetics using cimetidine (CMT) as an OCT1 inhibitor. Time–activity curves in the liver and heart were acquired from dynamic data, and the 99mTc-TF uptake ratio was calculated from SPECT. From the in vitro study, 99mTc-TF was found to be transported by OCT1 and OCT2. When CMT-preloaded rats and control rats were compared, the hepatic accumulation of the 99mTc-TF was reduced, and the time to peak heart count shifted to an earlier stage. The hepatic accumulation of 99mTc-TF was markedly suppressed, and the heart-to-liver ratio increased 1.6-fold. The pharmacokinetics of 99mTc-TF were greatly changed by OCT1 inhibitor. Even in humans, the administration of OCT1 inhibitor before cardiac SPECT examination may reduce 99mTc-TF hepatic accumulation and contribute to the suppression of artifacts and the improvement of SPECT image quality

    The effect of duration of illness and antipsychotics on subcortical volumes in schizophrenia: Analysis of 778 subjects

    Get PDF
    BackgroundThe effect of duration of illness and antipsychotic medication on the volumes of subcortical structures in schizophrenia is inconsistent among previous reports. We implemented a large sample analysis utilizing clinical data from 11 institutions in a previous meta-analysis.MethodsImaging and clinical data of 778 schizophrenia subjects were taken from a prospective meta-analysis conducted by the COCORO consortium in Japan. The effect of duration of illness and daily dose and type of antipsychotics were assessed using the linear mixed effect model where the volumes of subcortical structures computed by FreeSurfer were used as a dependent variable and age, sex, duration of illness, daily dose of antipsychotics and intracranial volume were used as independent variables, and the type of protocol was incorporated as a random effect for intercept. The statistical significance of fixed-effect of dependent variable was assessed.ResultsDaily dose of antipsychotics was positively associated with left globus pallidus volume and negatively associated with right hippocampus. It was also positively associated with laterality index of globus pallidus. Duration of illness was positively associated with bilateral globus pallidus volumes. Type of antipsychotics did not have any effect on the subcortical volumes.DiscussionA large sample size, uniform data collection methodology and robust statistical analysis are strengths of the current study. This result suggests that we need special attention to discuss about relationship between subcortical regional brain volumes and pathophysiology of schizophrenia because regional brain volumes may be affected by antipsychotic medication

    The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020)

    Get PDF
    The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members.As a result, 79 GRADE-based recommendations, 5 Good Practice Statements (GPS), 18 expert consensuses, 27 answers to background questions (BQs), and summaries of definitions and diagnosis of sepsis were created as responses to 118 CQs. We also incorporated visual information for each CQ according to the time course of treatment, and we will also distribute this as an app. The J-SSCG 2020 is expected to be widely used as a useful bedside guideline in the field of sepsis treatment both in Japan and overseas involving multiple disciplines.other authors: Satoru Hashimoto,Daisuke Hasegawa,Junji Hatakeyama,Naoki Hara,Naoki Higashibeppu,Nana Furushima,Hirotaka Furusono,Yujiro Matsuishi,Tasuku Matsuyama,Yusuke Minematsu,Ryoichi Miyashita,Yuji Miyatake,Megumi Moriyasu,Toru Yamada,Hiroyuki Yamada,Ryo Yamamoto,Takeshi Yoshida,Yuhei Yoshida,Jumpei Yoshimura,Ryuichi Yotsumoto,Hiroshi Yonekura,Takeshi Wada,Eizo Watanabe,Makoto Aoki,Hideki Asai,Takakuni Abe,Yutaka Igarashi,Naoya Iguchi,Masami Ishikawa,Go Ishimaru,Shutaro Isokawa,Ryuta Itakura,Hisashi Imahase,Haruki Imura,Takashi Irinoda,Kenji Uehara,Noritaka Ushio,Takeshi Umegaki,Yuko Egawa,Yuki Enomoto,Kohei Ota,Yoshifumi Ohchi,Takanori Ohno,Hiroyuki Ohbe,Kazuyuki Oka,Nobunaga Okada,Yohei Okada,Hiromu Okano,Jun Okamoto,Hiroshi Okuda,Takayuki Ogura,Yu Onodera,Yuhta Oyama,Motoshi Kainuma,Eisuke Kako,Masahiro Kashiura,Hiromi Kato,Akihiro Kanaya,Tadashi Kaneko,Keita Kanehata,Ken-ichi Kano,Hiroyuki Kawano,Kazuya Kikutani,Hitoshi Kikuchi,Takahiro Kido,Sho Kimura,Hiroyuki Koami,Daisuke Kobashi,Iwao Saiki,Masahito Sakai,Ayaka Sakamoto,Tetsuya Sato,Yasuhiro Shiga,Manabu Shimoto,Shinya Shimoyama,Tomohisa Shoko,Yoh Sugawara,Atsunori Sugita,Satoshi Suzuki,Yuji Suzuki,Tomohiro Suhara,Kenji Sonota,Shuhei Takauji,Kohei Takashima,Sho Takahashi,Yoko Takahashi,Jun Takeshita,Yuuki Tanaka,Akihito Tampo,Taichiro Tsunoyama,Kenichi Tetsuhara,Kentaro Tokunaga,Yoshihiro Tomioka,Kentaro Tomita,Naoki Tominaga,Mitsunobu Toyosaki,Yukitoshi Toyoda,Hiromichi Naito,Isao Nagata,Tadashi Nagato,Yoshimi Nakamura,Yuki Nakamori,Isao Nahara,Hiromu Naraba,Chihiro Narita,Norihiro Nishioka,Tomoya Nishimura,Kei Nishiyama,Tomohisa Nomura,Taiki Haga,Yoshihiro Hagiwara,Katsuhiko Hashimoto,Takeshi Hatachi,Toshiaki Hamasaki,Takuya Hayashi,Minoru Hayashi,Atsuki Hayamizu,Go Haraguchi,Yohei Hirano,Ryo Fujii,Motoki Fujita,Naoyuki Fujimura,Hiraku Funakoshi,Masahito Horiguchi,Jun Maki,Naohisa Masunaga,Yosuke Matsumura,Takuya Mayumi,Keisuke Minami,Yuya Miyazaki,Kazuyuki Miyamoto,Teppei Murata,Machi Yanai,Takao Yano,Kohei Yamada,Naoki Yamada,Tomonori Yamamoto,Shodai Yoshihiro,Hiroshi Tanaka,Osamu NishidaGuideline

    The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020)

    Get PDF
    The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members.other authors: Yasuhiro Norisue, Satoru Hashimoto, Daisuke Hasegawa, Junji Hatakeyama, Naoki Hara, Naoki Higashibeppu, Nana Furushima, Hirotaka Furusono, Yujiro Matsuishi, Tasuku Matsuyama, Yusuke Minematsu, Ryoichi Miyashita, Yuji Miyatake, Megumi Moriyasu, Toru Yamada, Hiroyuki Yamada, Ryo Yamamoto, Takeshi Yoshida, Yuhei Yoshida, Jumpei Yoshimura, Ryuichi Yotsumoto, Hiroshi Yonekura, Takeshi Wada, Eizo Watanabe, Makoto Aoki, Hideki Asai, Takakuni Abe, Yutaka Igarashi, Naoya Iguchi, Masami Ishikawa, Go Ishimaru, Shutaro Isokawa, Ryuta Itakura, Hisashi Imahase, Haruki Imura, Takashi Irinoda, Kenji Uehara, Noritaka Ushio, Takeshi Umegaki, Yuko Egawa, Yuki Enomoto, Kohei Ota, Yoshifumi Ohchi, Takanori Ohno, Hiroyuki Ohbe, Kazuyuki Oka, Nobunaga Okada, Yohei Okada, Hiromu Okano, Jun Okamoto, Hiroshi Okuda, Takayuki Ogura, Yu Onodera, Yuhta Oyama, Motoshi Kainuma, Eisuke Kako, Masahiro Kashiura, Hiromi Kato, Akihiro Kanaya, Tadashi Kaneko, Keita Kanehata, Ken-ichi Kano, Hiroyuki Kawano, Kazuya Kikutani, Hitoshi Kikuchi, Takahiro Kido, Sho Kimura, Hiroyuki Koami, Daisuke Kobashi, Iwao Saiki, Masahito Sakai, Ayaka Sakamoto, Tetsuya Sato, Yasuhiro Shiga, Manabu Shimoto, Shinya Shimoyama, Tomohisa Shoko, Yoh Sugawara, Atsunori Sugita, Satoshi Suzuki, Yuji Suzuki, Tomohiro Suhara, Kenji Sonota, Shuhei Takauji, Kohei Takashima, Sho Takahashi, Yoko Takahashi, Jun Takeshita, Yuuki Tanaka, Akihito Tampo, Taichiro Tsunoyama, Kenichi Tetsuhara, Kentaro Tokunaga, Yoshihiro Tomioka, Kentaro Tomita, Naoki Tominaga, Mitsunobu Toyosaki, Yukitoshi Toyoda, Hiromichi Naito, Isao Nagata, Tadashi Nagato, Yoshimi Nakamura, Yuki Nakamori, Isao Nahara, Hiromu Naraba, Chihiro Narita, Norihiro Nishioka, Tomoya Nishimura, Kei Nishiyama, Tomohisa Nomura, Taiki Haga, Yoshihiro Hagiwara, Katsuhiko Hashimoto, Takeshi Hatachi, Toshiaki Hamasaki, Takuya Hayashi, Minoru Hayashi, Atsuki Hayamizu, Go Haraguchi, Yohei Hirano, Ryo Fujii, Motoki Fujita, Naoyuki Fujimura, Hiraku Funakoshi, Masahito Horiguchi, Jun Maki, Naohisa Masunaga, Yosuke Matsumura, Takuya Mayumi, Keisuke Minami, Yuya Miyazaki, Kazuyuki Miyamoto, Teppei Murata, Machi Yanai, Takao Yano, Kohei Yamada, Naoki Yamada, Tomonori Yamamoto, Shodai Yoshihiro, Hiroshi Tanaka & Osamu Nishid

    A basic study on incentive pricing for demand response programs based on social welfare maximization

    No full text
    Demand response programs (DRs) have been getting more active as one of the effective demand-side management methods (DSMs), which can contribute to the power supply-demand balancing operations in electric power grids. In particular, peak-time-rebate-DR (PTR-DR) is expected to penetrate further because it brings benefit both electric power suppliers and consumers with smaller burden on the consumer-side in comparison with the other DR types. Although several demonstrative field tests on the DRs have been promoted, there is room for discussion yet how to set the appropriate incentive payment for the cooperation of DR requirement from the power suppliers. This paper presents a pricing method of incentive payment in the DRs based on a problem framework of social optimization. In the authors’ proposal, decrement of the consumers’ comfort, which is caused by the DR cooperation, is converted into the price. That is, the proposed pricing method calculates the negative consumers’ surplus as the appropriate incentive payment in the DRs

    The effect of duration of illness and antipsychotics on subcortical volumes in schizophrenia : Analysis of 778 subjects

    Get PDF
    Background: The effect of duration of illness and antipsychotic medication on the volumes of subcortical structures in schizophrenia is inconsistent among previous reports. We implemented a large sample analysis utilizing clinical data from 11 institutions in a previous meta-analysis. Methods: Imaging and clinical data of 778 schizophrenia subjects were taken from a prospective meta-analysis conducted by the COCORO consortium in Japan. The effect of duration of illness and daily dose and type of antipsychotics were assessed using the linear mixed effect model where the volumes of subcortical structures computed by FreeSurfer were used as a dependent variable and age, sex, duration of illness, daily dose of antipsychotics and intracranial volume were used as independent variables, and the type of protocol was incorporated as a random effect for intercept. The statistical significance of fixed-effect of dependent variable was assessed. Results: Daily dose of antipsychotics was positively associated with left globus pallidus volume and negatively associated with right hippocampus. It was also positively associated with laterality index of globus pallidus. Duration of illness was positively associated with bilateral globus pallidus volumes. Type of antipsychotics did not have any effect on the subcortical volumes. Discussion: A large sample size, uniform data collection methodology and robust statistical analysis are strengths of the current study. This result suggests that we need special attention to discuss about relationship between subcortical regional brain volumes and pathophysiology of schizophrenia because regional brain volumes may be affected by antipsychotic medication
    corecore