12 research outputs found

    Protein atlas of fibroblast specific protein 1 (FSP1)/S100A4

    Full text link
    Fibroblast specific protein 1 (FSP1)/S100A4 is a calcium binding protein which has been linked to epithelial-mesenchymal transition, tissue fibrosis, pulmonary vascular disease, metastatic tumour development, increased tumour cell motility and invasiveness. This protein is reported to be also expressed in newly formed and differentiated fibroblasts and has been used in various studies to demonstrate epithelial-mesenchymal transition (EMT). We aimed to characterize S100A4 positive cells in different human tissue compartments, with the focus on fibroblasts/myofibroblast. We found S100A4 expression in a wide range of cells. Fibroblasts/myofibroblasts showed a broad spectrum of staining intensity, ranging from negative to strong expression of S100A4, with the strongest expression in smooth muscle actin positive myofibroblasts. Cells of haematopoietic lineage, namely CD4 and CD8 positive T-lymphocytes, but not B-lymphocytes expressed S100A4. All investigated monocytes, macrophages and specialised histiocytes were positive for S100A4. Even some epithelial cells of the kidney and bladder were positive for S100A4. Expression was also found in the vasculature. Here, cells of the subendothelial space, tunica adventitia and some smooth muscle cells of the tunica media were positive for S100A4. In summary, S100A4 is expressed in various cell types of different lineage and is not, as originally believed, specific for fibroblasts (FSP). Results attained under the premise of specificity of FSP1/S100A4 for fibroblasts, like the founding research on EMT type 2 in kidney and liver, therefore need to be reinterpreted

    FISH analysis for diagnostic evaluation of challenging melanocytic lesions

    No full text
    The differential diagnosis of malignant melanomas and atypical melanocytic nevi is still a diagnostic challenge. The currently accepted morphologic criteria show substantial interobserver variability, likewise immunohistochemical studies are often not able to discriminate these lesions reliably. Techniques that support diagnostic accuracy are of the greatest importance considering the growing incidence of malignant melanomas and their increase in younger patients. In this study we analyzed the feasibility of fluorescence in situ hybridization (FISH) analysis for the discrimination of malignant and benign melanocytic tumors. A panel of DNA probes was used to detect chromosomal aberrations of chromosomes 6 and 11. On a series of 5 clearly malignant and benign melanocytic tumors we confirmed the applicability of the test. Then we focused on examination of ambiguous melanocytic lesions, where atypical cells are often difficult to relocalize in the 4',6-Diamidino-2-phenylindol (DAPI)- fluorescence stain. FISH analyses were conducted on destained H&E-stained slides. By comparison of the DAPI-image with photos taken from the H&E stain, unambiguous assignment of the FISH results to the conspicuous groups of cells was possible. The results of FISH analysis were consistent with the conventional diagnosis in 11 of 14 small ambiguous lesions. Of the remaining 3 cases, 2 showed FISH-results close to the cut-off level. Comparison of FISH results on thin and thick sections revealed that the cut-off values have to be adopted for 2 µm destained sections. In conclusion, FISH analysis is a useful and applicable tool for assessment of even smallest melanocytic neoplasms, although there will remain unclear cases that cannot be solved even after additional FISH evaluation

    Protein atlas of fibroblast specific protein 1 (FSP1)/S100A4

    No full text
    Fibroblast specific protein 1 (FSP1)/S100A4 is a calcium binding protein which has been linked to epithelial-mesenchymal transition, tissue fibrosis, pulmonary vascular disease, metastatic tumour development, increased tumour cell motility and invasiveness. This protein is reported to be also expressed in newly formed and differentiated fibroblasts and has been used in various studies to demonstrate epithelial-mesenchymal transition (EMT). We aimed to characterize S100A4 positive cells in different human tissue compartments, with the focus on fibroblasts/myofibroblast. We found S100A4 expression in a wide range of cells. Fibroblasts/myofibroblasts showed a broad spectrum of staining intensity, ranging from negative to strong expression of S100A4, with the strongest expression in smooth muscle actin positive myofibroblasts. Cells of haematopoietic lineage, namely CD4 and CD8 positive T-lymphocytes, but not Blymphocytes expressed S100A4. All investigated monocytes, macrophages and specialised histiocytes were positive for S100A4. Even some epithelial cells of the kidney and bladder were positive for S100A4. Expression was also found in the vasculature. Here, cells of the subendothelial space, tunica adventitia and some smooth muscle cells of the tunica media were positive for S100A4. In summary, S100A4 is expressed in various cell types of different lineage and is not, as originally believed, specific for fibroblasts (FSP). Results attained under the premise of specificity of FSP1/S100A4 for fibroblasts, like the founding research on EMT type 2 in kidney and liver, therefore need to be reinterpreted

    Mutational spectrum and therapy response of metastasized GIST in Central Switzerland - a population-based study

    Full text link
    Our data support previous observations, that PDGFRα mutations play no important role in metastasized GISTs. The influence of Imatinib and Sunitinib therapy in metastasized GISTs with wild type genotype and c-kit exon 9 mutations needs further investigation

    Lung adenocarcinoma with BRAF G469L mutation refractory to vemurafenib.

    No full text
    BRAF V600E is an emerging drug target in lung cancer, but the clinical significance of non-V600 BRAF mutations in lung cancer and other malignancies is less clear. Here, we report the case of a patient with metastatic lung adenocarcinoma with BRAF G469L mutation refractory to vemurafenib. We calculated a structure model of this very rare type of mutated BRAF kinase to explain the molecular mechanism of drug resistance. This information may help to develop effective targeted therapies for cancers with non-V600 BRAF mutations
    corecore