5 research outputs found

    Extreme 13 C depletion of carbonates formed during oxidation of biogenic methane in fractured granite

    No full text
    Precipitation of exceptionally 13C-depleted authigenic carbonate is a result of, and thus a tracer for, sulphate-dependent anaerobic methane oxidation, particularly in marine sediments. Although these carbonates typically are less depleted in 13C than in the source methane, because of incorporation of C also from other sources, they are far more depleted in 13C (δ13C as light as -69% V-PDB) than in carbonates formed where no methane is involved. Here we show that oxidation of biogenic methane in carbon-poor deep groundwater in fractured granitoid rocks has resulted in fracture-wall precipitation of the most extremely 13Cdepleted carbonates ever reported, δ13C down to -125% V-PDB. A microbial consortium of sulphate reducers and methane oxidizers has been involved, as revealed by biomarker signatures in the carbonates and S-isotope compositions of co-genetic sulphide. Methane formed at shallow depths has been oxidized at several hundred metres depth at the transition to a deep-seated sulphate-rich saline water. This process is so far an unrecognized terrestrial sink of methane.A3497</p

    Dissolved inorganic carbon in coastal acid sulfate landscapes

    No full text
    An acid sulfate soil landscape was investigated to understand the pattern of dissolved inorganic carbon (DIC). Drainage water was measure in situ for DIC using a novel conversion methodology. Sediments and soils were collected and used in an incubation experiment to induce oxidation. Temporal and spatial variations in DIC and stable isotope (13CDIC) concentration were found to exist between the groundwater and surface water. This demonstrated a hydrologic boundary between the surface water located in the drainage system and the underlying groundwater. Lab-based atmospheric equilibration studies of groundwater showed temporal decreases in pH, Fe(II), alkalinity, and, DIC with an associated increase in 13CDIC when compared to non-acid sulfate impacted waterbodies. The loss of DIC was demonstrated to follow first-order kinetics

    Lanthanoid behaviour in an acidic landscape

    No full text
    Lanthanoids were studied in a boreal landscape where an abundance of acid sulfate soils and Histosols provide a unique opportunity to increase the understanding of how these metals behave in acidic soils and waters and interact with soil and aqueous organic matter. In the acid sulfate soils lanthanoids are mobile as reflected in high to very high concentrations in soil water and runoff (typically a few mg l-1 but up to 12 mg l-1) and abundant release by several relatively weak extractants (ammonium acetate EDTA, sodium pyrophosphate, hydroxylamine hydrochloride) applied on bulk soil. Normalisation with the lanthanoid pool in the underlying parent materials (sulphide-bearing sediments deposited in brackish-water) and soil water showed that the extensive release/retention in the acidic soil was accompanied by large, and variable, fractionation trends across the lanthanoid series. In low-order streams draining these soils, the lanthanoid concentrations were high and, as indicated by frontal ultrafiltration and geochemical modelling, largely dissolved (<1 kDa) in the form of the species LnSO4 + and Ln3+. In other moderately acidic stream waters (pH 4.3–4.6), organic complexation was predicted to be important in the <1 kDa fraction (especially for the heavy lanthanoids) and strongly dominating in the colloidal phase (1 kDa– 0.45 lm). Along the main stem of a stream in focus (catchment area of 223 km2), lanthanoid concentrations increased downstream, in particular during high flows, caused by a downstream increase in the proportion of acid sulfate soils which are extensively flushed during wet periods. The geochemical models applied to the colloidal Ln-organic phase were not successful in predicting the measured fractionation patterns

    Iron behavior in a northern estuary: large pools of non-sulfidized Fe(II) associated with organic matter

    No full text
    The estuaries of the Northern Baltic Sea (Gulf of Bothnia) receive an abundance of diagenetically reactive catchment-derived Fe, which is to a large degree complexed with organic matter or present as Fe (hydr-)oxides. However, our understanding of sedimentary Fe diagenesis in these estuaries is limited. To address this limitation, the present study examines Fe geochemistry in a 3.5-m-thick estuarine benthic mud layer and three samples of suspended particulate matter of a catchment on the eastern Gulf of Bothnia. The age–depth model of the mud, constructed on the basis of sedimentary features as well as 137Cs and aquatic plant 14C determinations, revealed a high average rate of sedimentation (5 cm · yr− 1) for the upper mud unit (0–182.5 cm, corresponding to 1973–2011), in response to intensive land-use (ditching) in the catchment since the 1960s and 1970s. The intensive land-use has resulted in a strong increase in the Fe accumulation rates, but has not caused a recognizable impact on the diagenetic processes of Fe including features such as degree of sulfidization and solid-phase partitioning. Iron X-ray absorption spectroscopy (XAS) indicated that in the suspended particulate matter, large proportions (47–58%) of Fe occur as Fe(III)-organic complexes and 2-line ferrihydrite. In the mud, the former is completely reduced, and reactive Fe (defined via extraction with 1 M HCl) was high throughout (52–68%, median = 61%) and strongly dominated by Fe(II). This reactive Fe(II) pool was sulfidized to only a limited extent (degree of reactive sulfidization = 11–26%, median = 17%). This phenomenon is attributed to the brackish-water conditions (i.e. low in sulfate) and the abundant input of reactive Fe(III) from the catchment, leading to a surplus of dissolved Fe2 + over dissolved sulfide in the sediment. The low availability of dissolved sulfide, in combination with the high average sedimentation rate, limits the formation of intermediate reduced sulfur compounds at the water–sediment interface, thereby retarding the conversion of FeS into pyrite (ratios of pyrite-S to AVS = 0.17–1.73, median = 0.37; degree of pyritization = 1–17%, median = 3%). Iron XAS, in combination with wavelet transform analysis, of representative sediment segments from the upper and lower mud units suggests that the non-sulfidized Fe(II) pool is dominantly complexed by organic matter, with the remaining Fe(II) occurring as mackinawite. This has implications for the understanding of early Fe diagenesis in settings with a high input of organic matter and relatively low supply of sulfate

    Sources, transport and sinks of beryllium in a coastal landscape affected by acidic soils

    No full text
    Beryllium (Be) sources, transport and sinks were studied in a coastal landscape where acidic soils (acid sulfate soils) have developed after drainage of fine-grained sulfide-bearing sediments. The study included the determination of total abundance and speciation of Be in a variety of solid and aqueous materials in both the terrestrial and estuarine parts of the landscape. A major feature was that despite normal (background) Be concentration in the sulfide-bearing sediments, the Be leaching from these sediments after O2-exposure and acid sulfate soil development were extensive, with concentrations up to 76 μg L_1 in soil water, 39 μg L_1 in runoff and 12 μg L_1 in low-order streams. These high Be concentrations were mainly in the solution form (i.e., passing a 1 kilodalton filter) and modelled to be dominated by free Be2+. The extensive Be release within, and leaching from the acid sulfate soils was controlled by pH, with a critical value of 4.0 below which the Be concentrations increased strongly. Although plagioclase and mica were most likely the main carriers of Be within these soils, it is suggested that other minerals such as Be hydroxides, Al hydroxides carrying Be, and Be sulfides are the main contributors of the abundance of dissolved Be in the acidic waters. When the acidic and Be-rich creek water was neutralized in the estuary of relatively low salinity, the dominating solution form of Be was removed by transformation to particles, reflected in the suspended particulate matter that had hydroxylamine hydrochloride extractable Be up to 17 mg kg_1 and ammonium acetate EDTA extractable Be up to 4 mg kg _1. In corresponding pristine materials (parent material of the acid sulfate soils) in the catchment, the median Be extractability with these reagents were only 0.3 and 0.05 mg kg_1, respectively. As the Be-rich suspended particulate matter ultimately became benthic sediment, the Be was preserved in terms of total concentrations but underwent to some extent changes in speciation, including release from hydroxides and concomitant scavenging by organic matter and particle surfaces
    corecore