5 research outputs found

    Bacterial cell cycle dynamics: size regulation during exponential growth and role of polyphosphate during starvation response

    Get PDF
    Bacteria are the most diverse and abundant kingdom of life and have adapted to survive and thrive in habitats around the globe. When provided with ample nutrients they grow and divide at staggering rates, increasing their population exponentially. Upon nutrient depletion on the other hand, they quickly adapt by drastically altering their metabolism, halting growth to survive for a very long time. Since bacteria are tiny -about a few micrometers-, visualizing these processes requires microscopy. To measure the dynamics of their shape and inner structures precisely, one needs to choose a technique that balances spatial resolution, temporal resolution and photo-toxicity. In this thesis, I present two projects using advanced dynamic microscopy, first to study cell size regulation during exponential growth in the abundance of nutrients and then to elucidate the role and positioning of polyphosphate granules during cell cycle exit in response to nutrient starvation. During exponential growth, bacteria balance growth and division to regulate their size, resulting in a narrow size distribution, referred to as cell size homeostasis. Recent work tried to uncover what cells sense to decide to divide in order to achieve size homeostasis: time, size, growth or a combination of those. Control of cell division is often equated to control of constriction onset; however, the constriction period still accounts for up to 40% of cell growth and could thus contribute significantly to cell size regulation. We used SIM microscopy to measure constriction kinetics and their impact on cell size regulation in Caulobacter crescentus. We found that constriction rate regulation can determine cell size. Moreover, constriction rate modulation compensates for variability in elongation before constriction, allowing a higher fidelity cell size homeostasis. We suggest a parsimonious model where excess cell wall precursors accumulate proportionally to elongation before constriction and set the rate of constriction. This is the first direct demonstration that constriction rate can contribute to cell size control and homeostasis in bacteria. Upon nutrient starvation, bacteria exit their cell cycle to preserve energy and nutrients. In many bacteria, such as Pseudomonas aeruginosa, this is associated with the accumulation of polyphosphate (polyP) in intracellular granules. PolyP is created by polyphosphate kinases (ppkâs), which are required for successful cell cycle exit and survival of and recovery from long-term starvation. Interestingly, these polyP granules are regularly spaced within the nucleoid. To date, it is not known during which stage polyP is required for cell cycle exit, and what causes the spacing of the granules. Here, we use fluorescence microscopy to probe the cell cycle stage of Îppk cells arrested during nutrient starvation as well as the localization and dynamics of ppkâs. We show that a majority of Îppk cells are arrested with open replication forks. Furthermore, we find that ppkâs localize in distinct patterns, already prior to starvation and polyP granule production, which could be responsible for the positioning of polyP granules. To this end, we developed a background subtraction algorithm to remove cytoplasmic fluorescence, improving accuracy of spot detection and localization

    A study of SeqA subcellular localization in Escherichia coli using photo-activated localization microscopy

    No full text
    Escherichia coli (E. coli) cells replicate their genome once per cell cycle to pass on genetic information to the daughter cells. The SeqA protein binds the origin of replication, oriC, after DNA replication initiation and sequesters it from new initiations in order to prevent overinitiation. Conventional fluorescence microscopy studies of SeqA localization in bacterial cells have shown that the protein is localized to discrete foci. In this study we have used photo-activated localization microscopy (PALM) to determine the localization of SeqA molecules, tagged with fluorescent proteins, with a localization precision of 20-30 nm with the aim to visualize the SeqA subcellular structures in more detail than previously possible. SeqA-PAmCherry was imaged in wild type E. coli, expressed from plasmid or genetically engineered into the bacterial genome, replacing the native seqA gene. Unsynchronized cells as well as cells with a synchronized cell cycle were imaged at various time points, in order to investigate the evolution of SeqA localization during the cell cycle. We found that SeqA indeed localized into discrete foci but these were not the only subcellular localizations of the protein. A significant amount of SeqA-PAmCherry molecules was localized outside the foci and in a fraction of cells we saw patterns indicating localization at the membrane. Using quantitative PALM, we counted protein copy numbers per cell, protein copy numbers per focus, the numbers of foci per cell and the sizes of the SeqA clusters. The data showed broad cell-to-cell variation and we did not observe a correlation between SeqA-PAmCherry protein numbers and the cell cycle under the experimental conditions of this study. The numbers of SeqA-PAmCherry molecules per focus as well as the foci sizes also showed broad distributions indicating that the foci are likely not characterized by a fixed number of molecules. We also imaged an E. coli strain devoid of the dam methylase (Δdam) and observed that SeqA-PAmCherry no longer formed foci, and was dispersed throughout the cell and localized to the plasma membrane more readily. We discuss our results in the context of the limitations of the technique.crosscheck: This document is CrossCheck deposited related_article: http://dx.doi.org/10.1039/C5FD90093J related_article: http://dx.doi.org/10.1039/C5FD90093J related_article: http://dx.doi.org/10.1039/C5FD90093J related_article: http://dx.doi.org/10.1039/C5FD90093J related_article: http://dx.doi.org/10.1039/C5FD90093J related_article: http://dx.doi.org/10.1039/C5FD90093J related_article: http://dx.doi.org/10.1039/C5FD90093J related_article: http://dx.doi.org/10.1039/C5FD90093J related_data: Supplementary Information copyright_licence: The Royal Society of Chemistry has an exclusive publication licence for this journal copyright_licence: This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0) history: Received 4 May 2015; Accepted 10 July 2015; Accepted Manuscript published 13 July 2015; Advance Article published 9 October 2015; Version of Record published 12 December 2015status: publishe

    Constriction Rate Modulation Can Drive Cell Size Control and Homeostasis in C. crescentus

    Get PDF
    Summary: Rod-shaped bacteria typically grow first via sporadic and dispersed elongation along their lateral walls and then via a combination of zonal elongation and constriction at the division site to form the poles of daughter cells. Although constriction comprises up to half of the cell cycle, its impact on cell size control and homeostasis has rarely been considered. To reveal the roles of cell elongation and constriction in bacterial size regulation during cell division, we captured the shape dynamics of Caulobacter crescentus with time-lapse structured illumination microscopy and used molecular markers as cell-cycle landmarks. We perturbed the constriction rate using a hyperconstriction mutant or fosfomycin ([(2R,3S)-3-methyloxiran-2-yl]phosphonic acid) inhibition. We report that the constriction rate contributes to both size control and homeostasis, by determining elongation during constriction and by compensating for variation in pre-constriction elongation on a single-cell basis. : Microbiology; Microbial Physiology; Microbial Cell Structure Subject Areas: Microbiology, Microbial Physiology, Microbial Cell Structur
    corecore